分析 由等比数列通项公式得公比q=2,由此能求出{an}的前10项和S10.
解答 解:∵在等比数列{an}中,${a_1}=\frac{1}{4},{a_3}{a_5}=4({{a_4}-1})$,
∴$\frac{1}{4}{q}^{2}•\frac{1}{4}{q}^{4}$=4($\frac{1}{4}{q}^{3}-1$),
解得q=2,
{an}的前10项和S10=$\frac{{a}_{1}(1-{q}^{10})}{1-q}$=$\frac{\frac{1}{4}(1-{2}^{10})}{1-2}$=$\frac{1023}{4}$.
故答案为:$\frac{1023}{4}$.
点评 本题考查等比数列前10项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $-\frac{16}{5}$ | B. | -3 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ②③④ | B. | ①②④ | C. | ①③④ | D. | ①②③ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com