已知.
(1)若恒成立,求的最大值;
(2)若为常数,且,记,求的最小值.
(1);(2).
解析试题分析:本题考查导数与函数及运用导数求单调区间、最值等数学知识,突出考查运用数学知识和方法分析问题解决问题的能力.第一问,是恒成立问题,先将恒成立问题转化为最值问题,求的最值是本问的关键,法一,利用基本不等式求最值,法二,利用导数求最值,无论用哪种方法都应注意函数的定义域;第二问,令,将进行转化,化简成的形式,利用二次函数的单调性求.
试题解析:(1)(解法一)
设,
∴,∴的最大值为.
(解法二)设,
,
∴,当时,,当时,,∴为极小值点,
∴,∴,∴的最大值为.
(2)设,则,则
令,则
即,
设,∵其对称轴,
在上单调递减,∴,
∴,.
考点:1.恒成立问题;2.基本不等式;3.利用导数求函数的单调区间和最值;4.二次函数的单调性和最值.
科目:高中数学 来源: 题型:解答题
某地开发了一个旅游景点,第1年的游客约为100万人,第2年的游客约为120万人.某数学兴趣小组综合各种因素预测:①该景点每年的游客人数会逐年增加;②该景点每年的游客都达不到130万人.该兴趣小组想找一个函数来拟合该景点对外开放的第年与当年的游客人数(单位:万人)之间的关系.
(1)根据上述两点预测,请用数学语言描述函数所具有的性质;
(2)若=,试确定的值,并考察该函数是否符合上述两点预测;
(3)若=,欲使得该函数符合上述两点预测,试确定的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com