精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=5 + 的定义域为(
A.{x|1<x≤2}
B.{x|1≤x≤2}
C.{x|x≤2且x≠1}
D.{x|x≥0且x≠1}

【答案】C
【解析】解:要使函数f(x)=5 + 有意义,
只需x﹣1≠0,且2﹣x≥0,
解得x≤2且x≠1.
即定义域为{x|x≤2且x≠1}.
故选:C.
【考点精析】通过灵活运用函数的定义域及其求法,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=2,前3项和为S3.

(1)求{an}的通项公式;

(2)设等比数列{bn}满足b1a1b4a15,求{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,求曲线处的切线方程;

(2)若当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).

晋级成功

晋级失败

合计

16

50

合计

(Ⅰ)求图中的值;

(Ⅱ)根据已知条件完成下面列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望

(参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015高考湖北(理)20】某厂用鲜牛奶在某台设备上生产两种奶制品.生产1吨产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天产品的产量不超过产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

W

12

15

18

P

0.3

0.5

0.2

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利(单位:元)是一个随机变量.

)求的分布列和均值;

若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,试求的单调增区间;

(2)试求上的最大值;

(3)当时,求证:对于恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,有下列说法:
①若f(a)f(b)>0,则函数y=f(x)在区间(a,b)上没有零点;
②若f(a)f(b)>0,则函数y=f(x)在区间(a,b)上可能有零点;
③若f(a)f(b)<0,则函数y=f(x)在区间(a,b)上没有零点;
④若f(a)f(b)<0,则函数y=f(x)在区间(a,b)上至少有一个零点;
其中正确说法的序号是(把所有正确说法的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点和直线l 的距离相等.

(Ⅰ)求动点的轨迹E的方程;

(Ⅱ)已知不与垂直的直线与曲线E有唯一公共点A,且与直线的交点为,以AP为直径作圆.判断点和圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国Ⅳ标准规定:轻型汽车的屡氧化物排放量不得超过80mg/km.根据这个标准,检测单位从某出租车公司运营的A、B两种型号的出租车中分别抽取5辆,对其氮氧化物的排放量进行检测,检测结果记录如表(单位:mg/km)

A

85

80

85

60

90

B

70

x

95

y

75

由于表格被污损,数据x,y看不清,统计员只记得A、B两种出租车的氮氧化物排放量的平均值相等,方差也相等.
(1)求表格中x与y的值;
(2)从被检测的5辆B种型号的出租车中任取2辆,记“氮氧化物排放量超过80mg/km”的车辆数为X,求X=1时的概率.

查看答案和解析>>

同步练习册答案