【题目】已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧, =2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )
A.2
B.3
C.
D.
【答案】B
【解析】解:设直线AB的方程为:x=ty+m,点A(x1 , y1),B(x2 , y2), 直线AB与x轴的交点为M(m,0),
由 y2﹣ty﹣m=0,根据韦达定理有y1y2=﹣m,
∵ =2,∴x1x2+y1y2=2,
结合 及 ,得 ,
∵点A,B位于x轴的两侧,∴y1y2=﹣2,故m=2.
不妨令点A在x轴上方,则y1>0,又 ,
∴S△ABO+S△AFO═ ×2×(y1﹣y2)+ × y1 ,
= .
当且仅当 ,即 时,取“=”号,
∴△ABO与△AFO面积之和的最小值是3,故选B.
可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及 =2消元,最后将面积之和表示出来,探求最值问题.
科目:高中数学 来源: 题型:
【题目】设数列{an}满足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求证:
(1)数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是( )
A.{t| }
B.{t| ≤t≤2}
C.{t|2 }
D.{t|2 }
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=2,CC1= ,则异面直线AB1和BC1所成角的正弦值为( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE(A′平面ABC)是△ADE绕DE旋转过程中的一个图形,有下列命题: ①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱锥A′﹣DEF的体积最大值为 a3;
④动点A′在平面ABC上的射影在线段AF上;
⑤二面角A′﹣DE﹣F大小的范围是[0, ].
其中正确的命题是(写出所有正确命题的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C: + =1(a>b>0)的右焦点为F,右顶点、上顶点分别为点A、B,且|AB|= |BF|.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若斜率为2的直线l过点(0,2),且l交椭圆C于P、Q两点,OP⊥OQ.求直线l的方程及椭圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求证: ⊥ ;
(2)设c=(0,1),若 + =c,求α,β的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 , , 是同一平面内的三个向量,其中 =(﹣ ,1).
(1)若| |=2 且 ∥ ,求 的坐标;
(2)若| |= ,( +3 )⊥( ﹣ ),求向量 , 的夹角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com