精英家教网 > 高中数学 > 题目详情

【题目】 如图所示的几何体中, 平面,且平面,正方形的边长为2为棱中点,平面分别与棱交于点.

(Ⅰ)求证:

)求证:平面平面

)求的长.

【答案】(Ⅰ)见解析;

(Ⅱ)见解析;

(Ⅲ)2.

【解析】

1)利用线面平行判定定理证得平面,再利用线面平行性质定理证得

2)证明直线平面,即证明垂直平面内的两条相交直线

(3)建立空间直角坐标系,设,由,求得

1)证明:因为为正方形,所以

平面平面

所以平面.

因为平面平面平面

所以.

2)证明:因为平面,所以.

因为是正方形,所以,又

所以平面,所以.

因为为棱中点,且

所以,又

所以平面,又平面

所以平面平面.-

3)如图所示,以分别轴建立空间直角坐标系,

因为,所以,则

因为

,且,则

由(2)可知平面平面,所以

所以,即

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中常数

(1)当时,讨论的单调性

(2)当时,是否存在整数使得关于的不等式在区间内有解?若存在,求出整数的最小值;若不存在,请说明理由.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①对于独立性检验,的值越大,说明两事件相关程度越大,②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是,③某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则高一学生被抽到的概率最大,④通过回归直线= +及回归系数,可以精确反映变量的取值和变化趋势,其中正确的个数是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象中相邻两条对称轴之间的距离为,且直线是其图象的一条对称轴.

1)求的值;

2)在图中画出函数在区间上的图象;

3)将函数的图象上各点的横坐标缩短为原来的(纵坐标不变),再把得到的图象向左平移个单位,得到的图象,求单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,圆OD为圆O上任意一点,过D作圆O的切线分别交直线EF两点,连AFBE交于点G,若点G形成的轨迹为曲线C

AFBE斜率分别为,求的值并求曲线C的方程;

设直线l与曲线C有两个不同的交点PQ,与直线交于点S,与直线交于点T,求的面积与面积的比值的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点

(1)求曲线的直角坐标方程;

(2)若点在曲线上的两个点且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】打赢扶贫攻坚战,到2020年全面建成小康社会,是中国共产党向全世界和全国人民的承诺.一贫困户在政府扶持下结合地方特色联合当地几户贫困户创办一家农产品公司.为了振兴乡村,打好扶贫攻坚战,某市党政府开展了地标特产展销会.该公司拟定在2020年元旦展销期间举行产品促销活动,经测算该产品的年销量t万件(生产量与销量相等)与促销费用x万元满足已知2020年生产该产品还需投入成本4+t万元(不含促销费),促销费x满足当产品销量价格定为5/件,当产品销量价格定为/(其中a为正常数).

(1)试将2020年该产品的利润y万元表示为促销费费x万元的函数;

(2)2020年该公司促销费投入多少万元时,公司利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果是抛物线上的点,它们的横坐标依次为是抛物线的焦点,若,则_______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,点EFG分别为线段BCPBAD的中点.

1)证明:EF∥平面PAC

2)证明:平面PCG∥平面AEF

3)在线段BD上找一点H,使得FH∥平面PCG,并说明理由.

查看答案和解析>>

同步练习册答案