精英家教网 > 高中数学 > 题目详情

【题目】如图(示意),公路AM、AN围成的是一块顶角为钝角α的角形耕地,其中.在该块土地中处有一小型建筑,经测量,它到公路的距离分别为.现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园.设,其中

(1)试建立间的等量关系;

(2)为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.

【答案】(1)3x+2y=xy;(2)当AB=10km时,最小面积为30km2

【解析】

(1)过点PPEAMPFAN,垂足为EF,连接PA.设ABxACy.由SABCSABP+SAPC,求得面积的表达式,从而求得xy的关系.

(2)运用基本不等式可得最小值.

(1)过点P作PE⊥AM,PF⊥AN,垂足为E、F.因为P到AM,AN的距离分别为3,2,

即PE=3,PF=2.由S△ABC=S△ABP+S△APCx3y2(3x+2y)①

所以S△ABCxy② ,即3x+2y=xy.

(2)因为3x+2y≥2,所以xy≥2.解得xy≥150.

当且仅当3x=2y取“=”,即x=10,y=15.

所以S△ABCxy有最小值30.

所以:当AB=10km时,该工业园区的面积最小,最小面积为30km2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 (是常数),

(1)求函数的单调区间;

(2)当时,函数有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:

数学成绩分组

[0,30)

[30,60)

[60,90)

[90,120)

[120,150]

人数

60

90

300

x

160

Ⅰ)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率;

Ⅱ)作出频率分布直方图,并估计该学校本次考试的数学平均分.(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,面积为的平面凸四边形的第条边的边长记为,此四边形内任一点到第条边的距离记为,若,则.类比以上性质,体积为的三棱锥的第个面的面积记为,此三棱锥内任一点到第个面的距离记为,若,则等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:(a>b>0)的离心率为,且过点(1,).

(1)求椭圆C的方程;

(2)设与圆O:x2+y2=相切的直线l交椭圆CA,B两点,求OAB面积的最大值,及取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式ax2-5x+b>0的解是-3<x<2,设A={x|bx2-5x+a>0},B={x|}.

(1)求ab的值;

(2)求ABA∪(UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家射击队的某队员射击一次,命中7~10环的概率如表所示:

命中环数

10环

9环

8环

7环

概率

0.32

0.28

0.18

0.12

求该射击队员射击一次 求:

(1)射中9环或10环的概率;

(2)至少命中8环的概率;(3)命中不足8环的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDEF中,四边形ABCD为矩形,二面角A-CD-F60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.

(1)求证:BF∥平面ADE;

(2)在线段CF上求一点G,使锐二面角B-EG-D的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜三棱柱的侧面与底面垂直,,且,求:

1)侧棱与底面所成角的大小;

2)求点到平面的距离.

查看答案和解析>>

同步练习册答案