精英家教网 > 高中数学 > 题目详情
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,点E在PD上,且PE:ED=2:1,
(1)求四棱锥P-ABCD的体积;
(2)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
分析:(1)由已知中底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,可由等边三角形性质及勾股定理得到PA与AB,AD均垂直,进而根据线面垂直的判定定理得到PA垂直底面,即为棱锥P-ABCD的高,代入棱锥体积公式,可得答案.
(2)取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.连接BF,MF,BM,OE.结合菱形的性质及三角形中位线定理及面面平行的判定定理可得平面BMF∥平面AEC,进而由面面平行的性质得到BF∥平面AEC.
解答:解:(1)∵底面ABCD为菱形,∠ABC=60°
PA=AC=1,PB=PD=
2

∴△ABC是等边三角形
∴AB=1
∴PB2=PA2+AB2
∴PA⊥AB
同理PA⊥AD
又∵AB∩AD=A,
∴PA⊥平面ABCD
∴PA是四棱锥P-ABCD的高
VP-ABCD=
1
3
S菱形ABCD•PA=
3
6
…(5分)
(2)存在点F为PC的中点,使BF∥平面AEC(6分)
理由如下:
取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.
连接BF,MF,BM,OE.
∵PE:ED=2:1,F为PC的中点,E是MD的中点,
∴MF∥EC,BM∥OE.…(8分)
∵MF?平面AEC,CE?平面AEC,BM?平面AEC,OE?平面AEC,
∴MF∥平面AEC,BM∥平面AEC.…(10分)
∵MF∩BM=M,
∴平面BMF∥平面AEC.…(11分)
又BF?平面BMF,
∴BF∥平面AEC.…(12分)
点评:本题考查的知识点是直线与平面平行的判定,棱锥的体积,其中(1)的关键是说明PA为棱锥的高,(2)的关键是证得平面BMF∥平面AEC.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,点E在PD上,且PE:ED=2:1.
(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,点E在PD上,且PE:ED=2:1.
(Ⅰ)求二面角E-AC-D的大小:
(Ⅱ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是菱形的四棱锥S-ABCD中,∠ABC=60°,SA=AB=a,SB=SD=
2
SA,点P在SD上,且SD=3PD.
(1)证明SA⊥平面ABCD;
(2)设E是SC的中点,求证BE∥平面APC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是菱形的四棱锥 P-ABCD中,∠ABC=60°,PA⊥平面ABCD,点E、F、G分别为CD、PD、PB的中点.PA=AD=2.
(1)证明:PC∥平面FAE;
(2)求二面角F-AE-D的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=2,PB=PD=2
2
,点F是PC的中点.
(Ⅰ)求证:PC⊥BD;
(Ⅱ)求BF与平面ABCD所成角的大小;
(Ⅲ)若点E在棱PD上,当
PE
PD
为多少时二面角E-AC-D的大小为
π
6

查看答案和解析>>

同步练习册答案