【题目】如图1,在矩形ABCD中, ,点分别在边上,且, 交于点.现将沿折起,使得平面平面,得到图2.
(Ⅰ)在图2中,求证: ;
(Ⅱ)若点是线段上的一动点,问点在什么位置时,二面角的余弦值为.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】试题分析:(1)先证明 ,再证明,证明平面,从而可得 ;
(2)建立直角坐标系,设,求出平面、平面的一个法向量,利用向量的夹角公式,结合二面角的余弦值为,即可得出结论.
试题解析:(Ⅰ)∵在矩形中, , ,
∴, ∴即.
∴在图2中, , .
又∵平面平面,平面平面,
∴平面, ∴,
依题意, ∥且,∴四边形为平行四边形.
∴∥, ∴, 又∵,
∴平面, 又∵平面, ∴.
(Ⅱ)如图1,在中, , ,
∵∥, ,∴.
如图,以点为原点建立平面直角坐标系,则
, , , ,
∴, , ,
∵,∴平面,
∴为平面的法向量.
设,则,
设为平面的法向量,则
即,可取,
依题意,有,
整理得,即,∴,
∴当点在线段的四等分点且时,满足题意.
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线:,过焦点斜率大于零的直线交抛物线于、两点,且与其准线交于点.
(Ⅰ)若线段的长为,求直线的方程;
(Ⅱ)在上是否存在点,使得对任意直线,直线,,的斜率始终成等差数列,若存在求点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4;坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程.
(Ⅱ)求曲线上的点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,如表为抽样试验结果:
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有 缺点的零件数y(件) | 11 | 9 | 8 | 5 |
(1)用相关系数r对变量y与x进行相关性检验;
(2)如果y与x有线性相关关系,求线性回归方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?(结果保留整数)
参考数据:,,.
参考公式:相关系数计算公式:,回归方程中斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系中,圆与轴负半轴交于点,过点的直线,分别与圆交于,两点.
(Ⅰ)若,,求的面积;
(Ⅱ)若直线过点,证明:为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com