分析 先移项,再通分,从而把原方程等价转化为$\frac{x-10}{x+7}$<0,由此能求出结果.
解答 解:∵$\frac{2x-3}{x+7}$<1,∴$\frac{2x-3}{x+7}-1=\frac{x-10}{x+7}$<0,
∴$\left\{\begin{array}{l}{x-10<0}\\{x+7>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-10>0}\\{x+7<0}\end{array}\right.$,
解得-7<x<10.
∴不等式:$\frac{2x-3}{x+7}$<1的解集为{x|-7<x<10}.
点评 本题考查不等式的解法,是基础题,解题时要认真审题,注意等价转化思想和分式不等式的性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com