精英家教网 > 高中数学 > 题目详情
(2013•唐山二模)△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积S=
3
4
(c2-a2-b2)

(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=
3
,求A.
分析:(Ⅰ)由余弦定理知c2-a2-b2=-2abcosC,再由△ABC的面积S=
1
2
absinC=
3
4
(c2-a2-b2),可得
1
2
absinC=
3
4
(-2abcosC),由此解得tanC的值,可得C的值.
(Ⅱ)由正弦定理可得a+b=2sinA+2sinB=2,sinA+sin(
π
3
-A)=1,求得sin(
π
3
+A)=1,结合A的范围求得A的值.
解答:解:(Ⅰ)由余弦定理知c2-a2-b2=-2abcosC,又△ABC的面积S=
1
2
absinC=
3
4
(c2-a2-b2),
所以,
1
2
absinC=
3
4
(-2abcosC),得tanC=-
3

因为0<C<π,所以,C=
3
.…(6分)
(Ⅱ)由正弦定理可知
a
sinA
=
b
sinB
=
c
sinC
=2,
所以有a+b=2sinA+2sinB=2,sinA+sin(
π
3
-A)=1,
展开整理得,sin(
π
3
+A)=1,且
π
3
π
3
+A<
3
,所以A=
π
6
.…(12分)
点评:本题主要考查正弦定理、余弦定理的应用,根据三角函数的值求角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•唐山二模)某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
(Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
(Ⅱ)4名成员随机分成两组,每组2人,一组负责收集成绩,另一组负责数据处理.求学生甲分到负责收集成绩组,学生乙分到负责数据处理组的概率.
p(K2≥k0 0.010 0.005 0.001
k0 6.635 7.879 10.828
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)若命题“?x0∈R,使得
x
2
0
+mx0+2m-3<0
”为假命题,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)已知函数f(x)=sin(2x+α)在x=
π
12
时有极大值,且f(x-β)为奇函数,则α,β的一组可能值依次为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)双曲线
x2
5
-
y2
4
=1
的顶点和焦点到其渐近线距离的比是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)在数列{an}中,a1=1,a2=2,an+2等于an+an+1除以3的余数,则{an}的前89项的和等于
100
100

查看答案和解析>>

同步练习册答案