精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F2(3,0),离心率为e=
3
2

(1)求椭圆的方程.
(2)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点,若坐标原点O在以MN为直径的圆上,求k的值.
分析:(1)由题意得
c=3
c
a
=
3
2
,解得a,再结合a2=b2+c2,可求得b2,从而可得椭圆的方程;
(2)由椭圆的方程与直线的方程y=kx联立,得(3+12k2)x2-12×3=0,设A(x1,y1),B(x2,y2),
F2A
=(x1-3,y1),
F2B
=(x2-3,y2),依题意,AF2⊥BF2,由
F2A
F2B
=0即可求得k的值.
解答:解:(1)由题意得
c=3
c
a
=
3
2
,得a=2
3
.  …(2分)
结合a2=b2+c2,解得a2=12,b2=3.…(4分)
所以,椭圆的方程为
x2
12
+
y2
3
=1.        …(6分)
(2)由
x2
12
+
y2
3
=1
y=kx
,得(3+12k2)x2-12×3=0.
设A(x1,y1),B(x2,y2),
则x1+x2=0,x1x2=-
36
3+12k2
,…(10分)
依题意,OM⊥ON,
易知,四边形OMF2N为平行四边形,所以AF2⊥BF2,…(12分)
因为
F2A
=(x1-3,y1),
F2B
=(x2-3,y2),
所以
F2A
F2B
=(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0,
-12×3(1+k2)
3+12k2
+9=0,
解得k=±
2
4
.…(15分)
点评:本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案