精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是(  )
A、
8
3
B、
3
8
C、
4
3
D、
3
4
分析:设A1C1∩B1D1=O1,根据线面垂直的判定定理可知B1D1⊥平面AA1O1,再根据面面垂直的判定定理可知故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过A1作A1H⊥AO1于H,则A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,利用等面积法求出A1H即可.
解答:精英家教网解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1
故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,
则易知A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=
2

AO1=3
2
,由A1O1•A1A=h•AO1,可得A1H=
4
3

故选:C.
点评:本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,则AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)在长方体ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)顶点D'到平面B'AC的距离;
(2)二面角B-AC-B'的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案