精英家教网 > 高中数学 > 题目详情
已知实数a,y满足
x-y+2≥0
x+y≥0
x≤1
,则z=|2x+y-4|的取值范围是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,设u=2x+y-4,则z=|u|,利用u的几何意义,进行平移即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
设u=2x+y-4,得y=-2x+u+4,
平移直线y=-2x+u+4,由图象可知当直线y=-2x+u+4经过点B时,
直线y=-2x+u+4的截距最大,此时u最大,
x=1
x-y+2=0
,解得
x=1
y=3

即B(1,3),此时u=2+3-4=1,
当直线y=-2x+u+4经过点A时,
直线y=-2x+u+4的截距最小,此时u最小,
x-y+2=0
x+y=0
,解得
x=-1
y=1

即A(-1,1),此时u=-2+1-4=-5,
即-5≤u≤1,
则0≤|u|≤5,
故答案为:[0,5]
点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为D.若对于任意的x1∈D,存在唯一的x2∈D,使得
f(x1)•f(x2)
=M成立,则称函数f(x)在D上的几何平均数为M.已知函数g(x)=3x+1(x∈[0,1]),则g(x)在区间[0,1]上的几何平均数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均为正数,其前n项和Sn满足2Sn=a
 
2
n
+an(n∈N*).
(1)证明:{an}为等差数列;
(2)令bn=
lnan
a
2
n
,记{bn}的前n项和为Tn,求证:Tn
2n2-n-1
4(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=2
2
,|
b
|=1,
a
b
=2,向量
c
满足(
a
-
c
)(
b
-
c
)=0,则|
c
|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设2x=5y=m,且
1
x
+
1
y
=2,则m的值是(  )
A、±
10
B、
10
C、10
D、100

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,∠C=90°,AC=
3
,则
AB
AC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,AB=8,AC=6,BC=10,顶点A、B、C处分别有一枚半径为1的硬币(顶点A、B、C分别与硬币的中心重合).向△ABC内部投一点,那么该点落在阴影部分的概率为(  )
A、1-
π
24
B、1-
π
48
C、
π
24
D、
π
48

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(sinx-cosx)2的最小正周期为(  )
A、2π
B、
2
C、π
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)满足:“对于区间(0,+∞)上的任意a,b,都有f(a+b)>f(b)成立”.
(Ⅰ)求f(0)的值,并指出f(x)在区间(0,+∞)上的单调性;
(Ⅱ)用增函数的定义证明:函数f(x)是(-∞,0)上的增函数;
(Ⅲ)判断f(x)是否为R上的增函数,如果是,请给出证明;如果不是,请举出反例.

查看答案和解析>>

同步练习册答案