【题目】已知是定义在上的函数,且对任意都有 ,且满足,,则=
A. B. C. D.
【答案】D
【解析】
函数y=f(x)的图象关于原点对称即函数y=f(x)为奇函数,求出f(2)的值,结合函数的周期,利用所求周期即可求解.
∵,
∴函数y=f(x)的图象关于(0,0)对称,即函数y=f(x)为奇函数,
∴f(0)=0,f(1)=3,
∵f(x+2)=f(2﹣x)+4f(2)=﹣f(x﹣2)+4f(2),
∴f(x+4)=﹣f(x)+4f(2),
f(x+8)=﹣f(x+4)+4f(2)=f(x),
∴函数的周期为8,
∴f(2019)=f(252×8+3)=f(3),
而f(2)=f(2)+4f(2),故f(2)=0,
故f(3)=f(1)+4f(2)=f(1)=3,
故选:D.
科目:高中数学 来源: 题型:
【题目】下列结论:
①y=πx是指数函数
②函数既是偶函数又是奇函数
③函数的单调递减区间是
④在增函数与减函数的定义中,可以把任意两个自变量”改为“存在两个自变量
⑤与表示同一个集合
⑥所有的单调函数都有最值
其中正确命题的序号是_______________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一次函数是上的减函数,,且 f [ f(x)]=16x-3.
(1)求;
(2)若在(-2,3)单调递增,求实数的取值范围;
(3)当时,有最大值1,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆 ,点P在圆外,过点P作圆C的两条切线,切点分别为T1 , T2 .
(1)若 ,求点P的轨迹方程;
(2)设 ,点P在平面上构成的图形为M,求M的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:若关于的方程无实数根,则;命题:若关于的方程有两个不相等的正实数根,则.
(1)写出命题的否命题,并判断命题的真假;
(2)判断命题“且”的真假,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资类产品的收益与投资额成正比,投资类产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出两类产品的收益与投资额的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读如图所示的程序框图,解答下列问题:
(1)求输入的的值分别为时,输出的的值;
(2)根据程序框图,写出函数()的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com