精英家教网 > 高中数学 > 题目详情

【题目】是定义在上的函数,若存在,使得上单调递增,在上单调递减,则称上的单峰函数,称为峰点,包含峰点的区间称为含峰区间;

1)判断下列函数:①,②,哪些是上的单峰函数?若是,指出峰点,若不是,说明理由;

2)若函数)是上的单峰函数,求实数a的取值范围;

3)设上的单峰函数,若m),,且,求证:的含峰区间.

【答案】1)见解析;(2;(3)见解析.

【解析】

1)依次判断各函数在上是否存在极大值点即可得出结论;

2)求出的极大值点,令极大值点在区间上即可;

3)利用的单调性得出的峰点在区间上即可.

1)①,令

时,,当时,

上单调递增,在上单调递减,

上的单峰函数,峰点为

②当时,

上单调递减,在上单调递增,

不是上的单峰函数;

2,令

时,,当时,

时,

的极大值点,

∵函数上的单峰函数,

,解得:

3)证明:∵上的单峰函数,

∴存在,使得上单调递增,在上单调递减,

假设,则上是增函数,

,与矛盾;

∴假设错误,故

上单调递增,在上单调递减,

的含峰区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,点在椭圆.

(1)求椭圆的方程;

(2)设直线与圆相切,与椭圆相交于两点,求证:是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为为椭圆上一动点(异于左右顶点),面积的最大值为

(1)求椭圆的方程;

(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在正常数,使得对任意的,都有成立,我们称函数同比不减函数

1)求证:对任意正常数都不是同比不减函数

2)若函数同比不减函数,求的取值范围;

3)是否存在正常数,使得函数同比不减函数,若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,直线经过点相交于两点.

(1)若,求证: 必为的焦点;

(2)设,若点上,且的最大值为,求的值;

(3)设为坐标原点,若,直线的一个法向量为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有10个不同的产品,其中4个次品,6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着金融市场的发展,越来越多人选择投资“黄金”作为理财的手段,下面将A市把黄金作为理财产品的投资人的年龄情况统计如下图所示.

1)求图中a的值;

2)求把黄金作为理财产品的投资者的年龄的中位数以及平均数;(结果用小数表示,小数点后保留两位有效数字)

3)以频率估计概率,现从所有投资者中随机抽取4人,记年龄在的人数为X,求X的分布列以及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上两个不同的点关于直线对称.

1)若已知为椭圆上动点,证明:

2)求实数的取值范围;

3)求面积的最大值(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数f(x)=|xa|+|x-2|.

(1)a=-3时,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

同步练习册答案