精英家教网 > 高中数学 > 题目详情
已知x=0是函数f(x)=(x2+ax+b)ex(x∈R)的一个极值点,且函数f(x)的图象在x=2处的切线的斜率为2e2
(Ⅰ)求函数f(x)的解析式并求单调区间.
(Ⅱ)设g(x)=,其中x∈[-2,m],问:对于任意的m>-2,方程g(x)=(m-1)2在区间(-2,m)上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.
【答案】分析:(Ⅰ)由x=0是函数f(x)=(x2+ax+b)ex(x∈R)的一个极值点,f(0)=0,得到关于a,b的一个方程,函数f(x)的图象在x=2处的切线的斜率为2e2,f(2)=2e2;得到一个关于a,b的一个方程,解方程组求出a,b即可;(Ⅱ)把求得的f′(x)代入g(x),方程g(x)=(m-1)2在区间(-2,m)上是否存在实数根,转化为求函数g(x)在区间(-2,m)上的单调性、极值、最值问题.
解答:解:(I)f(x)=[x2+(a+2)x+a+b]ex
由f(0)=0得b=-a∴f(x)=[x2+(a+2)x]ex
又f(2)=2e2
∴[4+2(a+2)]e2=2e2
故a=-3
令f(x)=(x2-x)ex≥0得x≤0或x≥1
令f(x)=(x2-x)ex<0得0<x<1
故:f(x)=(x2-3x+3)gx,单调增区间是(-∞,o],[1,+∞),单调减区间是(0,1).
(Ⅱ)解:假设方程g(x)=在区间(-2,m)上存在实数根
设x是方程的实根,
,从而问题转化为证明方程
在(-2,m)上有实根,并讨论解的个数
因为=
所以
①当m>4或-2<m<1时,h(2)-h(m)<0,所以h(x)=0在(-2,m)上有解,且只有一解
②当1<m<4时,h(-2)>0且h(m)>0,但由于
所以h(x)=0在(-2,m)上有解,且有两解
③当m=1时,h(x)=x2-x=0⇒x=0或x=1,所以h(x)=0在(-2,m)上有且只有一解;
当m=4时,h(x)=x2-x6=0⇒x=-2或x=3,
所以h(x)=0在(-2,4)上也有且只有一解,
综上所述,对于任意的m>-2,方程g(x)=在区间(-2,m)上均有实数根
且当m≥4或-2<m≤1时,有唯一的实数解;当1<m<4时,有两个实数解.
点评:考查函数在某点取得极值的条件和导数的几何意义,求函数f(x)的解析式体现了方程的思想;方程根的个数问题转化为求函数的最值问题,体现了转化的思想方法,再求函数最值中,又用到了分类讨论的思想;属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x=0是函数f(x)=(x2+ax+b)ex(x∈R)的一个极值点,且函数f(x)的图象在x=2处的切线的斜率为2e2
(Ⅰ)求函数f(x)的解析式并求单调区间.
(Ⅱ)设g(x)=
f′(x)ex
,其中x∈[-2,m],问:对于任意的m>-2,方程g(x)=(m-1)2在区间(-2,m)上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=0是函数f(x)=(x2+bx)ex的一个极值点.
(1)求f(x);
(2)若不等式f(x)>ax3在[,2]内有解,求实数a的取值范围;
(3)函数y=f(x)在x=an(an>0,n∈N*)处的切线与x轴的交点为(an-an+1,0).若a1=1,bn=
1an
+2,问是否存在等差数列{cn},使得b1c1+b2c2+…+bncn=2n+1(2n-1)+n2+2n+2对n∈N*都成立?若存在求出{cn}的通项公式,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009年广东省韶关市高考数学二模试卷(理科)(解析版) 题型:解答题

已知x=0是函数f(x)=(x2+ax+b)ex(x∈R)的一个极值点,且函数f(x)的图象在x=2处的切线的斜率为2e2
(Ⅰ)求函数f(x)的解析式并求单调区间.
(Ⅱ)设g(x)=,其中x∈[-2,m],问:对于任意的m>-2,方程g(x)=(m-1)2在区间(-2,m)上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x=0是函数f(x)=(x2+bx)ex的一个极值点.
(1)求f(x);
(2)若不等式f(x)>ax3在[,2]内有解,求实数a的取值范围;
(3)函数y=f(x)在x=an(an>0,n∈N*)处的切线与x轴的交点为(an-an+1,0).若a1=1,bn=
1
an
+2,问是否存在等差数列{cn},使得b1c1+b2c2+…+bncn=2n+1(2n-1)+n2+2n+2对n∈N*都成立?若存在求出{cn}的通项公式,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案