精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调递增区间.
(3)求当x为何值时,函数取最大值,并求最大值.

分析 (1)先利用二倍角和辅助角公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求ω的值;
(2)将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(3)结合三角函数的图象和性质,求出f(x)的最大值,即可求x的值.

解答 解:函数f(x)=2sinωxcosωx+cos2ωx(ω>0)
化简可得:f(x)=sin2ωx+cos2ωx=$\sqrt{2}$sin(2ωx$+\frac{π}{4}$)
(1)最小正周期为π,即$\frac{2π}{2ω}=π$,解得:ω=1.
(2)由(1)得,f(x)=$\sqrt{2}$sin(2x$+\frac{π}{4}$)
令 $2kπ-\frac{π}{2}$≤2x$+\frac{π}{4}$≤2k$π+\frac{π}{2}$,(k∈Z).
解得:$kπ-\frac{3π}{8}$≤x≤$kπ+\frac{π}{8}$,
∴f(x)的单调递增区间为[$kπ-\frac{3π}{8}$,$kπ+\frac{π}{8}$](k∈Z).
(3)∵sin(2ωx$+\frac{π}{4}$)∈[-1,1],
∴f(x)∈[-$\sqrt{2}$,$\sqrt{2}$],
当f(x)的取值最大值$\sqrt{2}$时,即$\sqrt{2}$sin(2x$+\frac{π}{4}$)=$\sqrt{2}$,
此时$2x+\frac{π}{4}=2kπ+\frac{π}{2}$,(k∈Z),
解得:$x=kπ+\frac{π}{8}$,(k∈Z),
∴当$x=kπ+\frac{π}{8}$,(k∈Z)时函数取最大值为$\sqrt{2}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设{an}是公比为正数的等比数列,a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=(2n-1)an求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.${(x-\frac{1}{{\root{3}{x}}})^{16}}$的展开式中常数项为1820.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若x•f(x-1)>0,则x的取值范围是(-∞,-1)∪(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设l,m,n均为直线,其中m,n在平面α内,则“l⊥m且l⊥n”是“l⊥α”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若不等式组$\left\{\begin{array}{l}x-1≥2016\\ x+1≤a\end{array}\right.$的解集中的元素有且仅有有限个数,则a=2018.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列变形,是因式分解的是(  )
A.x2+3x-16=(x-2)(x+5)-6B.x2-16=(x+4)(x-4)
C.(x-1)2=x2-2x+1D.${x^2}+1=x(x+\frac{1}{x})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:函数f(x)=x2+2x+m的图象与x轴没有交点;命题q:m2-2m-3<0.若“p∨q”为真,“p∧q”为假.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如果抛物线y2=ax的准线是直线x=-1,那么它的焦点坐标为(1,0).

查看答案和解析>>

同步练习册答案