精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的偶函数,且x≤0时, f(x)=-x+1

(1)求f(0),f(2);

(2)求函数f(x)的解析式;

(3)若f(a-1)<3,求实数a的取值范围.

【答案】(1)3; (2); (3)(-1,3).

【解析】

(1 )代入解析式可得利用函数奇偶性的性质即可求的值; (2)求得根据函数奇偶性的性质即可求函数)的解析式;(3) 根据函数的奇偶性与单调性将不等式转化为利用绝对值不等式的解法可求实数的取值范围.

(1)因为当x≤0时,f(x)=-x+1所以f(0)=1.

又函数f(x)是定义在R上的偶函数,所以

f(2)=f(-2)=—(-2)+1=3,即f(2)=3.

(2)令x>0,则-x<0,

从而f(-x)=x+1=f(x),

∴x>0时,f(x)=x+1

∴函数f(x)的解析式为

,

(3)由函数图像可得

∴f(x)=-x+1在(-∞,0]上为减函数.

又f(x)是定义在R上的偶函数,

∴f(x)在(0,+∞)上为增函数.

∵f(a-1)<3=f(2),∴|a-1|<2,解得-1<a<3.

故实数a的取值范围为(-1,3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数,则下列结论错误的是( )

A. 是偶函数 B. 的值域是

C. 方程的解只有 D. 方程的解只有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y()与销售单价x()之间的关系可近似看作一次函数ykxb(k≠0),函数图象如图所示.

(1)根据图象,求一次函数ykxb(k≠0)的表达式;

(2)设公司获得的毛利润(毛利润=销售总价-成本总价)S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,圆C的参数方程为 (θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 . (Ⅰ)求圆C的普通方程和直线l的直角坐标方程;
(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(a>0,a≠1,m≠﹣1),是定义在(﹣1,1)上的奇函数.

(I)求f(0)的值和实数m的值;

(II)当m=1时,判断函数f(x)在(﹣1,1)上的单调性,并给出证明;

(III)若且f(b﹣2)+f(2b﹣2)>0,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)﹣x2 , 是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为2的菱形, 为平面外一点,且底面上的射影为四边形的中心, 上一点,

(Ⅰ)若上一点,且,求证: 平面

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市“金牛”公园欲在长、宽分别为 的矩形地块内开凿一“挞圆”形水池(如图),池边由两个半椭圆)组成,其中,“挞圆”内切于矩形且其左右顶点 和上顶点构成一个直角三角形

(1)试求“挞圆”方程;

(2)若在“挞圆”形水池内建一矩形网箱养殖观赏鱼,则该网箱水面面积最大为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,其左顶点A在圆O:x2+y2=16上. (Ⅰ)求椭圆W的方程;
(Ⅱ)若点P为椭圆W上不同于点A的点,直线AP与圆O的另一个交点为Q.是否存在点P,使得 ?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案