精英家教网 > 高中数学 > 题目详情

【题目】北京市为了缓解交通压力,计划在某路段实施交通限行,为调查公众对该路段交通限行的态度,某机构从经过该路段的人员中随机抽查了80人进行调查,将调查情况进行整理,制成下表:

年龄(岁)

人数

24

26

16

14

赞成人数

12

14

3

(1)若经过该路段的人员对交通限行的赞成率为0.40,求的值;

(2)在(1)的条件下,若从年龄在内的两组赞成交通限行的人中在随机选取2人进行进一步的采访,求选中的2人中至少有1人来自内的概率.

【答案】(1)(2).

【解析】

试题分析:(1)通过样本中的赞成率在求解即可(2)设年龄在位被调查者为,年龄在位被调查,写出所有基本事件,事件的个数,然后求解概率.

试题解析:(1)经过该路段的人员中对交通限行赞成的人数为,因为样本中的赞成率为,所以,解得.

(2)选中的人中至少有人来自为事件.

设年龄在内的为调查者分别为,年龄在内的为调查者分别为,则从这位被调查者中抽出人的情况有,共个基本事件,且每个基本事件等可能发生.

其中事件包括个基本事件.

所以选中的人中至少有人来自内的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,直线过点.

(1)若直线与圆相切,求直线的方程;

(2)若直线与圆交于 两点,求使得面积最大的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次“知识竞赛”活动中,有四道题,其中为难度相同的容易题, 为中档题, 为较难题,现甲、乙两位同学均需从四道题目中随机抽取一题作答.

(1)求甲、乙两位同学所选的题目难度相同的概率;

(2)求甲所选题目的难度大于乙所选题目的难度的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如下(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).

(Ⅰ)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留守儿童有关?

(Ⅱ)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.

参考公式: ; 附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业共有20条生产线,由于受生产能力和技术水平等因素的影响,会产生一定量的次品.根据经验知道,每台机器产生的次品数万件与每台机器的日产量万件之间满足关系: .已知每生产1万件合格的产品可以以盈利3万元,但每生产1万件次品将亏损1万元.

)试将该企业每天生产这种产品所获得的利润表示为的函数;

)当每台机器的日产量为多少时,该企业的利润最大,最大为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为奇函数,为常数.

求实数的值;

求函数的单调区间;

若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=+(a25a-6)i(a∈R).试求实数a分别为什么值时,z分别为(1)实数?(2)虚数?(3)纯虚数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)用定义证明:函数在区间上是减函数;

(2)若函数是偶函数,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时,若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案