精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域为D,若存在非零实数m满足?x∈M(M⊆D),均有x+m∈D,且f(x+m)≥f(x),则称f(x)为M上的m高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是(  )
分析:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,画出函数图象,根据高调函数的定义可知4≥3a2-(-a2),解之即可求出a的取值范围.
解答:解:定义域为R的函数f(x)是奇函数,
当x≥0时,f(x)=|x-a2|-a2=
x-2a2(x≥a2)
-x(0≤x<a2)

根据解析式和函数是奇函数进行画图,图象如右图,
∵f(x)为R上的4高调函数,当x<0时,函数的最大值为a2,要满足f(x+4)≥f(x),4大于等于区间长度3a2-(-a2),
∴4≥3a2-(-a2),
∴-1≤a≤1,即实数a的取值范围是[-1,1].
故选A.
点评:本题主要考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案