分析 (1)利用游轮每小时使用燃料费用与速度的立方成正比例,其他费用为每小时3240元,可将游轮从A到B一个单程航行的总费用S表示为游轮的航速v的函数S=f(v);
(2)利用函数的单调性,即可求出函数的最小值.
解答 解:(1)设游轮以每小时vkm/h的速度航行,游轮单程航行的总费用为f(v)元,
∵游轮的燃料费用每小时k•v3元,依题意k•103=60,则k=0.06,
∴S=f(v)=$0.06{v}^{3}×\frac{100}{v}$+3240×$\frac{100}{v}$=6v2+$\frac{324000}{v}$(0<v≤50);
(2)f′(v)=$\frac{12({v}^{3}-27000)}{{v}^{2}}$,
f′(v)=0得,v=30,
当0<v<30时,f′(v)<0,此时f(v)单调递减;
当30<v<50时,f′(v)>0,此时f(v)单调递增;
故当v=30时,f(v)有极小值,也是最小值,f(30)=16200,
所以,轮船公司要获得最大利润,游轮的航速应为30km/h.
点评 本题是一道实际应用题,考查了正比例函数,建模思想,求函数的导数,利用导数求函数的最值,解决实际问题的能力.
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{13}$ | B. | $\sqrt{5}$ | C. | $\sqrt{10}$ | D. | 2+$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{7}{25}$ | B. | $\frac{7}{25}$ | C. | $-\frac{24}{25}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | p∧q | B. | ¬p∧q | C. | ¬p∨q | D. | p∨q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com