精英家教网 > 高中数学 > 题目详情
17.用辗转相除法求108和45的最大公约数为9.

分析 利用辗转相除法即可得出.

解答 解:108=45×2+18,45=18×2+9,18=9×2,
∴108和45的最大公约数为9.
故答案为9.

点评 本题考查了利用辗转相除法求两个数的最大公约数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.对任意x∈R,函数f(x)的导数存在,若f'(x)>f(x),则以下正确的是(  )
A.f(2015)>f(0)B.f(2015)<f(0)C.f(2015)>e2015•f(0)D.f(2015)<e2015•f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别为a,b,c,若b-$\frac{1}{2}$c=acosC,a=2
(1)求$\frac{c}{sinC}$的值;
(2)若b+c=bc,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=sin(2x+$\frac{π}{3}$)的最小正周期=π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义在R上的奇函数f(x)满足:对于任意x∈R,有f(x)=f(2-x),且f(1)=1若$tanα=\frac{1}{3}$,则f(10sinαcosα)的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=-2+\sqrt{10}cosθ}\\{y=\sqrt{10}sinθ}\end{array}\right.$(θ为参数),曲线C2的极坐标方程为ρ=2cosθ+6sinθ.
(1)将曲线C1方程,将曲线C2极坐标方程化为直角坐标方程;
(2)曲线C1,C2是否相交,若相交请求出公共弦的长,若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{1}{3}{x^3}+ax+b(a,b∈R)$在x=2处取得极小值$-\frac{4}{3}$.
(1)求f(x)的单调递增区间;
(2)若$f(x)\;≤{m^2}+m+\frac{22}{3}$在[-4,3]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.运行如图所示的程序框图,若输出的S是510,则①应为(  )
A.n≤5B.n≤6C.n≤7D.n≤8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对任意的实数R,集合A={x|x2+x-6>0},B={-1,0,1,2,3,4}.则B∩∁RA=(  )
A.{2,3,4,5}B.{-1,0}C.{-1,0,1,2}D.{ 2,3,4}

查看答案和解析>>

同步练习册答案