分析 根据双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$得出其右焦点坐标,可知抛物线的焦点坐标,从而得到抛物线的方程和准线方程,进而可求得K的坐标,设A(x0,y0),过A点向准线作垂线AB,则B(-3,y0),根据|AK|=$\sqrt{2}$|AF|及AF=AB=x0-(-3)=x0+3,进而可求得A点坐标.
解答 解:∵双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$,其右焦点坐标为(3,0).
∴抛物线C:y2=12x,准线为x=-3,
∴K(-3,0)
设A(x0,y0),过A点向准线作垂线AB,则B(-3,y0)
∵$|{AK}|=\sqrt{2}|{AF}|$,AF=AB=x0-(-3)=x0+3,
∴由BK2=AK2-AB2得BK2=AB2,从而y02=(x0+3)2,即12x0=(x0+3)2,
解得x0=3.
故答案为:3.
点评 本题主要考查了抛物线的简单性质.考查了学生对抛物线基础知识的熟练掌握.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{7}{9}$ | B. | $\frac{7}{9}$ | C. | -$\frac{7}{18}$ | D. | $\frac{7}{18}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com