精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (α∈[0,2π))是奇函数,则α=(
A.0
B.
C.π
D.

【答案】D
【解析】解:由题意可知,函数f(x)是奇函数,即f(﹣x)+f(x)=0, 不妨设x<0,则﹣x>0.
则有:f(x)=﹣x2+cos(x+α),
f(﹣x)=x2﹣sinx
那么:﹣x2+cos(x+α)+x2﹣sinx=0
解得: (k∈Z)
∵α∈[0,2π)
∴α=
故选:D.
【考点精析】利用函数奇偶性的性质对题目进行判断即可得到答案,需要熟知在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣2ax(其中a∈R).
(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;
(Ⅱ)若f(x)≤1恒成立,求a的取值范围;
(Ⅲ)设g(x)=f(x)+ x2 , 且函数g(x)有极大值点x0 , 求证:x0f(x0)+1+ax02>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过原点O(0,0)且与直线y=2x﹣8相切于点P(4,0).

(1)求圆C的方程;

(2)已知直线l经过点(4, 5),且与圆C相交于MN两点,若|MN|=2,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.

(Ⅰ)若G为AD边上一点,DG= DA,求证:EG∥平面BCF;
(Ⅱ)求二面角E﹣BF﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
已知函数f(x)=4﹣|x|﹣|x﹣3|
(Ⅰ)求不等式f(x+ )≥0的解集;
(Ⅱ)若p,q,r为正实数,且 =4,求3p+2q+r的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线 的右支上的一点P作一直线l与两渐近线交于A、B两点,其中P是AB的中点;
(1)求双曲线的渐近线方程;
(2)当P坐标为(x0 , 2)时,求直线l的方程;
(3)求证:|OA||OB|是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 (a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数λ≥0,设各项均为正数的数列{an}的前n项和为Sn,满足:a1 = 1,

).

(1)若λ = 0,求数列{an}的通项公式;

(2)若对一切恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示。

1)求第345组的频率;

2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第345组中用分层抽样的方法抽取6名学生进入第二轮面试,求第345组每组各抽取多少学生进入第二轮面试?

3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。

查看答案和解析>>

同步练习册答案