A. | (kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$),k∈Z | B. | (2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈Z | ||
C. | (k-$\frac{1}{4}$,k-$\frac{3}{4}$),k∈Z | D. | (2k-$\frac{1}{4}$,2k+$\frac{3}{4}$),k∈Z |
分析 根据图象求出函数的解析式,结合三角函数的性质即可得到结论.
解答 解:从图象可以看出:图象过相邻的两个零点为($\frac{1}{4}$,0),($\frac{5}{4}$,0),
可得:T=2×$(\frac{5}{4}-\frac{1}{4})$=2,
∴ω=$\frac{2π}{2}$=π,
∴f(x)=cos(πx+φ),将点($\frac{1}{4}$,0)带入可得:cos($\frac{π}{4}$+φ)=0,
令$\frac{π}{4}$+φ=$\frac{π}{2}$,可得φ=$\frac{π}{4}$,
∴f(x)=cos(πx+$\frac{π}{4}$),
由$2kπ≤πx+\frac{π}{4}≤2kπ+π$,单点递减(k∈Z),
解得:2k-$\frac{1}{4}$≤x≤2k+$\frac{3}{4}$,k∈Z.
故选D
点评 本题主要考查三角函数单调性的求解,利用图象求出三角函数的解析式是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ¬p为:?x∈(-2,2),|x-1|+|x+2|<6 | B. | ¬p为:?x∈(-2,2),|x-1|+|x+2|≥6 | ||
C. | ¬p为:?x∈(-∞,-2]∪[2,+∞),|x-1|+|x+2|<6 | D. | ¬p为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x>0,总有2x≤1 | B. | ?x≤0,总有2x≤1 | C. | ?x≤0,使得2x≤1 | D. | ?x>0,使得2x≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-1) | B. | (2,+∞) | C. | (0,2) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{-5+\sqrt{51}}{2}$ | B. | $\frac{-5+\sqrt{61}}{6}$ | C. | $\frac{1}{2}$ | D. | $\frac{2\sqrt{2}-1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{10}}}{4}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\frac{{7\sqrt{10}}}{10}$ | D. | $\frac{{7\sqrt{10}}}{20}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com