精英家教网 > 高中数学 > 题目详情
(2011•东城区二模)如图,BC是半径为2的圆O的直径,点P在BC的延长线上,PA是圆O的切线,点A在直径BC上的射影是OC的中点,则∠ABP=
30°
30°
;PB•PC=
12
12
分析:先根据点A在直径BC上的射影是OC的中点得∠AOP=60°;再结合OA=OB求出∠ABP;最后在Rt△AOP求出PA,结合切割线定理即可求出PB.PC.
解答:解:由条件点A在直径BC上的射影E是OC的中点易得OE=
1
2
OA;
∴∠AOP=60°;
又由OA=OB⇒∠ABP=30°.
在Rt△AOP中,因为OA=2,∠AOP=60°可得AP=2
3

由切割线定理可得PB•PC=AP2=12.
故答案为:30°,12.
点评:本题主要考查与圆有关的比例线段、相似三角形的判定及切线性质的应用.属于基础题.解决这类题目的关键在于对性质的熟练掌握以及灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•东城区二模)给出下列三个命题:
①?x∈R,x2>0;
②?x0∈R,使得x02≤x0成立;
③对于集合M,N,若x∈M∩N,则x∈M且x∈N.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知正项数列{an}中,a1=1,a2=2,2an2=an+12+an-12(n≥2),则a6等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知双曲线
x2
a2
-
y2
b2
=1 (a>0,b>0)
,过其右焦点且垂直于实轴的直线与双曲线交于M,N两点,O为坐标原点.若OM⊥ON,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,则调查小组的总人数为
9
9
;若从调查小组中的公务员和教师中随机选2人撰写调查报告,则其中恰好有1人来自公务员的概率为
3
5
3
5

相关人员数 抽取人数
公务员 32 x
教师 48 y
自由职业者 64 4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知点P(2,t)在不等式组
x-y-4≤0
x+y-3≤0
表示的平面区域内,则点P(2,t)到直线3x+4y+10=0距离的最大值为
4
4

查看答案和解析>>

同步练习册答案