精英家教网 > 高中数学 > 题目详情
6.设α∈(0,$\frac{π}{4}$),则a=tan(sinα),b=tan(cosα)的大小关系是(  )
A.a<bB.b<a
C.a=bD.不能确定,由α具体求值决定

分析 根据三角函数的单调性进行比较即可.

解答 解:当α∈(0,$\frac{π}{4}$)时,0<sinα<cosα<$\frac{\sqrt{2}}{2}$$<\frac{π}{2}$,
∵y=tanx在(0,$\frac{π}{2}$)上为增函数,
∴tan(sinα)<tan(cosα),
即a<b,
故选:A.

点评 本题主要考查三角函数值的大小比较,根据三角函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=|x2-a2|(a>0),f(m)=f(n),且m<n<0,若点P(m,n)到直线x+y-8=0的最大距离为$6\sqrt{2}$时,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)满足对任意实数x,y,f(x+y)=f(x)+f(y),且f(1)=1.证明:如果对任意x>0,f(x)>0,则符合条件的f(x)是唯一的.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)在区间[-2,2]上的图象是一条连续不断的曲线,且函数f(x)在(-2,2)上仅有一个零点,则f(-2)•f(2)的符号是(  )
A.小于零B.大于零C.小于或大于零D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设Sn是等差数列{an}的前n项和,若S8=S3+10,则S11=(  )
A.12B.18C.22D.44

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合P={α|2kπ≤α≤(2k+1)π,k∈Z},Q={α|-4≤α≤4},则P∩Q=(  )
A.φB.{α|-4≤α≤-π,或0≤α≤π}
C.{α|-4≤α≤4}D.{α|0≤α≤π}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别F1(-c,0),F2(c,0),若双曲线上存在点P,使得csin∠PF1F2=asin∠PF2F1,则该曲线的离心率的取值范围是(  )
A.(1,$\sqrt{2}$]B.(1,$\sqrt{3}$]C.(1,$\sqrt{2}$+1]D.(1,$\sqrt{3}$+1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点P为Rt△ABC所在平面外的一点,且PA=PB=PC,M为斜边AB的中点.
(1)求证:PM⊥平面ABC;
(2)当CA=CB时,求证:CM⊥面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数f(x)=lg(x-1)的零点.

查看答案和解析>>

同步练习册答案