如图,在五面体中,已知平面,,,,.
(1)求证:;
(2)求三棱锥的体积.
(1)详见解析,(2)
【解析】
试题分析:(1)证明线线平行,一般思路为利用线面平行的性质定理与判定定理进行转化. 因为,平面,平面,所以平面,又平面,平面平面,所以.(2)求三棱锥的体积,关键是找寻高.可由面面垂直性质定理探求,因为平面,所以有面平面,则作就可得平面.证明平面过程也可从线线垂直证线面垂直.确定是三棱锥的高之后,可利用三棱锥的体积公式.
试题解析:
(1)因为,平面,平面,
所以平面, 3分
又平面,平面平面,
所以. 6分
(2)在平面内作于点,
因为平面,平面,所以,
又,平面,,
所以平面,
所以是三棱锥的高. 9分
在直角三角形中,,,所以,
因为平面,平面,所以,
又由(1)知,,且,所以,所以, 12分
所以三棱锥的体积. 14分
考点:线面平行判定定理与性质定理,线面垂直判定定理与性质定理,三棱锥体积
科目:高中数学 来源:2013-2014学年江苏省高三下学期4月周练文科数学试卷(解析版) 题型:填空题
为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为01到50的袋装奶粉中抽取5袋进行检验,现将50袋奶粉按编号顺序平均分成5组,用每组选取的号码间隔一样的系统抽样方法确定所选取的袋奶粉的编号,若第4组抽出的号码为36,则第1组中用抽签的方法确定的号码是 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省徐州市高三第三次质量检测理科数学试卷(解析版) 题型:填空题
从高三年级随机抽取100名学生,将他们的某次考试数学成绩绘制成频率分布直方图.由图中数据可知成绩在[130,140)内的学生人数为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省徐州市高三第三次质量检测文科数学试卷(解析版) 题型:填空题
从高三年级随机抽取100名学生,将他们的某次考试数学成绩绘制成频率分布直方图.由图中数据可知成绩在[130,140)内的学生人数为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省高考模拟考试理科数学试卷(解析版) 题型:填空题
已知等差数列{an}的公差不为零,a1+a2+a5>13,且a1,a2,a5 成等比数列,则a1 的取值范围为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com