精英家教网 > 高中数学 > 题目详情
14.已知椭圆C:$\frac{{x}^{2}}{2}+{y}^{2}=1$和圆O:x2+y2=1,过点A(m,0)(m>1)作两条互相垂直的直线l1,l2,l1于圆O相切于点P,l2与椭圆相交于不同的两点M,N.
(1)若m=$\sqrt{2}$,求直线l1的方程;
(2)求m的取值范围;
(3)求△OMN面积的最大值.

分析 (1)由题意设出直线l1的方程,由直线与圆相切的条件、点到直线的距离公式列出方程,可得直线l1的方程;
(2)由条件对m分类讨论,设直线l2、直线l1的方程,分别列出方程求出m和k关系,联立椭圆方程化简后,利用△>0列出方程化简后,求出m的取值范围;
(3)设M(x1,y1),N(x2,y2),由条件对m分类讨论,先求出斜率不存在时△OMN面积,利用韦达定理和弦长公式表示出△OMN面积,化简后利用换元法求出面积的最大值.

解答 解:(1)由题意可知:直线l1的斜率存在,设为k,
则直线l1的方程为y=k(x-$\sqrt{2}$),即kx-y-$\sqrt{2}$k=0,
∴圆O:x2+y2=1的圆心O(0,0)到直线l1的距离
d=$\frac{|-\sqrt{2}k|}{\sqrt{1+{k}^{2}}}=1$,化简得k=1或k=-1,
∴直线l1的方程是$x-y-\sqrt{2}=0$或$x+y-\sqrt{2}=0$;
(2)①当1<m  $<\sqrt{2}$时,满足条件;
②当m≥$\sqrt{2}$时,直线l2的斜率存在,设为k,
则直线l2的方程为y=k(x-m),即kx-y-km=0,
∵l1⊥l2,∴直线l1的方程为y=$-\frac{1}{k}$(x-m)(k≠0),即x+ky-m=0,
∵l1于圆O相切于点P,∴$\frac{|-m|}{\sqrt{1+{k}^{2}}}=1$,化简得m2=1+k2
由$\left\{\begin{array}{l}{y=k(x-m)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$得,(2k2+1)x2-4mk2x+2k2m2-2=0,
∴△=(-4mk22-4(2k2+1)(2m2k2-2)>0,
化简得,1+k2(2-m2)>0,
由m2=1+k2得,k2=m2-1,代入上式化简得,
m4-3m2+1<0,解得$\frac{3-\sqrt{5}}{2}<{m}^{2}<\frac{3+\sqrt{5}}{2}$,
又m≥$\sqrt{2}$,则$2≤{m}^{2}<\frac{3+\sqrt{5}}{2}$,得$\sqrt{2}≤m<\frac{\sqrt{5}+1}{2}$,
综上得,m的取值范围是$(1,\frac{\sqrt{5}+1}{2})$;
(3)设M(x1,y1),N(x2,y2),
①当1<m  $<\sqrt{2}$时,若直线l2的斜率不存在,
则直线l2的方程x=m,不妨设M(m,$\sqrt{\frac{2-{m}^{2}}{2}}$),N(m,$-\sqrt{\frac{2-{m}^{2}}{2}}$),
∴|MN|=$2\sqrt{\frac{2-{m}^{2}}{2}}$,则△OMN面积S=$\frac{1}{2}×m×2\sqrt{\frac{2-{m}^{2}}{2}}$=$\sqrt{\frac{{m}^{2}(2-{m}^{2})}{2}}$,
由$1<m<\sqrt{2}$得1<m2<2,
当m2=1 时,△OMN面积S取到最大值$\frac{\sqrt{2}}{2}$;
②当m≥$\sqrt{2}$时,直线l2的斜率存在,设为k,
则直线l2的方程为y=k(x-m),即kx-y-km=0,
∵l1⊥l2,∴直线l1的方程为y=$-\frac{1}{k}$(x-m)(k≠0),即x+ky-m=0,
∵l1于圆O相切于点P,∴$\frac{|-m|}{\sqrt{1+{k}^{2}}}=1$,化简得m2=1+k2
由$\left\{\begin{array}{l}{y=k(x-m)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$得,(2k2+1)x2-4mk2x+2k2m2-2=0,
则x1+x2=$\frac{4m{k}^{2}}{2{k}^{2}+1}$,x1x2=$\frac{2{m}^{2}{k}^{2}-2}{2{k}^{2}+1}$,1+k2(2-m2
|MN|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$
=$\sqrt{(1+{k}^{2})[{(\frac{4m{k}^{2}}{2{k}^{2}+1})}^{2}-4×\frac{2{m}^{2}{k}^{2}-2}{2{k}^{2}+1}]}$=$\frac{2\sqrt{2}\sqrt{(1+{k}^{2}){[1+k}^{2}(2-{m}^{2})]}}{2{k}^{2}+1}$,
又原点O(0,0)到直线l2的距离d=$\frac{|-km|}{\sqrt{1+{k}^{2}}}$,
∴△OMN面积S=$\frac{1}{2}×\frac{|-km|}{\sqrt{1+{k}^{2}}}×\frac{2\sqrt{2}\sqrt{(1+{k}^{2}){[1+k}^{2}(2-{m}^{2})]}}{2{k}^{2}+1}$
=$\frac{\sqrt{2}\sqrt{{k}^{2}{m}^{2}{(1+2k}^{2}-{k}^{2}{m}^{2})}}{2{k}^{2}+1}$=$\sqrt{2}\sqrt{\frac{{m}^{2}{k}^{2}}{2{k}^{2}+1}-(\frac{{m}^{2}{k}^{2}}{2{k}^{2}+1})^{2}}$,
设t=$\frac{{m}^{2}{k}^{2}}{2{k}^{2}+1}$,则S=$\sqrt{2}\sqrt{-{t}^{2}+t}$,
由$1<m<\frac{\sqrt{5}+1}{2}$以及m2=1+k2得,0<t<1,
所以当t=$\frac{1}{2}$时,△OMN面积的最大值是$\frac{\sqrt{2}}{2}$,
综上得,△OMN面积的最大值是$\frac{\sqrt{2}}{2}$.

点评 本题考查了直线与椭圆位置关系,直线与圆相切的条件、点到直线的距离公式,以及“设而不求”的解题思想方法,考查分类讨论思想,换元法,化简、变形、计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}的前n项和为Sn,且a3+a4+a5+a6+a7=20,则S9=(  )
A.18B.36C.60D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设0<x<$\frac{π}{2}$,记a=sinx,b=esinx,c=lnsinx,则a,b,c的大小关系为(  )
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,连接椭圆的四个顶点得到的菱形的面积为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)已知O为坐标原点,点P是圆C1:x2+y2=$\frac{5}{3}$上的点,过P作圆的切线交椭圆于M,N两点,求△OMN面积的最大值,并求出面积最大值时切线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正项数列{an}满足,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N+).
(1)证明数列{$\frac{1}{{a}_{n}}$}为等差数列,并求数列{an}的通项公式;
(2)设bn=(-1)n•n•an•an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,AC=5,$\frac{1}{tan\frac{A}{2}}$+$\frac{1}{tan\frac{C}{2}}$-$\frac{5}{tan\frac{B}{2}}$=0,则BC+AB=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知下列四个命题:p1:若f(x)=2x-2-x,则?x∈R,f(-x)=-f(x);p2:若函数$f(x)=\left\{\begin{array}{l}a{x^2}+1,x≥0\\({a+2}){e^{ax}},x<0\end{array}\right.$为R上的单调函数,则实数a的取值范围是(0,+∞);p3:若函数f(x)=xlnx-ax2有两个极值点,则实数a的取值范围是$({0,\frac{1}{2}})$;p4:已知函数f(x)的定义域为R,f(x)满足$f(x)=\left\{\begin{array}{l}{x^2}+2,x∈[{0,1})\\ 2-{x^2},x∈[{-1,0})\end{array}\right.$且f(x)=f(x+2),$g(x)=\frac{2x+5}{x+2}$,则方程f(x)=g(x)在区间[-5,1]上所有实根之和为-7.其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线y=x+k与曲线y=ex相切,则k的值为(  )
A.eB.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线x-2017=0的倾斜角为(  )
A.0B.$\frac{π}{3}$C.$\frac{π}{2}$D.不存在

查看答案和解析>>

同步练习册答案