【题目】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.
(1)证明:平面平面;
(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.
【答案】(1)见解析
(2)
【解析】分析:(1)先证平面CMD,得,再证,进而完成证明。
(2)先建立空间直角坐标系,然后判断出的位置,求出平面和平面的法向量,进而求得平面与平面所成二面角的正弦值。
详解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.
因为M为上异于C,D的点,且DC为直径,所以 DM⊥CM.
又 BCCM=C,所以DM⊥平面BMC.
而DM平面AMD,故平面AMD⊥平面BMC.
(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz.
当三棱锥MABC体积最大时,M为的中点.
由题设得,
设是平面MAB的法向量,则
即
可取.
是平面MCD的法向量,因此
,
,
所以面MAB与面MCD所成二面角的正弦值是.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l经过点A(﹣1,0),其倾斜角是α,以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程是ρ2=6ρcosθ﹣5.
(Ⅰ)若直线l和曲线C有公共点,求倾斜角α的取值范围;
(Ⅱ)设B(x,y)为曲线C任意一点,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B、C为⊙O上三点,B为 的中点,P为AC延长线上一点,PQ与⊙O相切于点Q,BQ与AC相交于点D.
(Ⅰ)证明:△DPQ为等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为梯形,AD∥BC,BC=6,PA=AD=CD=2,E为BC上一点且BE= BC,PB⊥AE.
(1)求证:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集与,且满足,,中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中,不可能成立的是( )
A. 没有最大元素, 有一个最小元素 B. 没有最大元素, 也没有最小元素
C. 有一个最大元素, 有一个最小元素 D. 有一个最大元素, 没有最小元素
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com