精英家教网 > 高中数学 > 题目详情
5.解方程:log2(9x-4)=log2(3x-2)+3.

分析 根据对数的运算性质,可将方程化为9x-4=8(3x-2),令t=3x,将方程转化为二次方程,求解后去除增根,可得答案.

解答 解:∵log2(9x-4)=log2(3x-2)+3,
∴log2(9x-4)=log2(3x-2)+log28,
∴log2(9x-4)=log28(3x-2),
∴9x-4=8(3x-2),
令t=3x,则9x=t2
∴t2-4=8(t-2),
解得:t=2,或t=6,
∵t=2时,log2(3x-2)无意义,
故t=6,
则x=log36=1+log32

点评 本题考查的知识点是对数的运算性质,熟练掌握对数的运算性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.不等式5x2-3x-8>0的解集为(  )
A.(-1,$\frac{8}{5}$)B.(-∞,-1)∪($\frac{8}{5}$,+∞)C.D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=aln(x+1)-$\frac{4}{x+1}$+x.
(1)对任意的x∈[$-\frac{1}{2}$,+∞),不等式f(x)≤x恒成立,求实数a的取值范围;
(2)若数列{an}的通项公式是an=1+$\frac{1}{n}$(n∈N*),前n项和是Sn,求证:Sn≥$\frac{2ln(n+1)}{ln2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=2x+1(x<1)的反函数是(  )
A.y=log2(x-1),x∈(1,3)B.y=-1+log2x,x∈(1,3)
C.y=log2(x-1),x∈(1,3]D.y=-1+log2x,x∈(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:(log23+log427)(log34+log98).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若关于x的不等式ax-b>0的解集为(-∞,1),则关于x的不等式(ax+b)(x-2)>0的解为(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=233.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知角α的终边上一点P的坐标为(-$\sqrt{3}$,y)(y≠0),且sinα=$\frac{1}{2}$y,则cosα-$\frac{1}{tanα}$ 等于(  )
A.$\frac{\sqrt{3}}{2}$或-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$或-$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.根据下列条件,求抛物线的标准方程:
(1)焦点为F(-7,0);
(2)准线为y=4;
(3)对称轴为x轴,顶点到焦点的距离为6;
(4)对称轴为y轴,经过点P(-6,-3);
(5)对称轴为坐标轴,经过点P(1,2).

查看答案和解析>>

同步练习册答案