精英家教网 > 高中数学 > 题目详情
8.在等比数列{an}中,已知a1=3,公比q≠1,等差数列{bn}满足b1=a1,b4=a2,b13=a3
(1)求数列{an}与{bn}的通项公式;
(2)记cn=an+bn,求数列{cn}的前n项和Sn

分析 (1)设等比数列{an}的公比为q≠1,等差数列{bn}的公差为d,运用等差数列和等比数列的通项公式,列方程组,可得公比和公差,进而得到所求通项公式;
(2)求得cn=an+bn=3n+(2n+1),运用数列的求和方法:分组求和,结合等比数列和等差数列的求和公式,计算即可得到所求和.

解答 解:(1)设等比数列{an}的公比为q≠1,等差数列{bn}的公差为d.
由b1=a1,b4=a2,b13=a3
得$\left\{\begin{array}{l}3q=3+3d\\ 3{q^2}=3+12d\end{array}\right.$⇒$\left\{\begin{array}{l}q=1+d\\{q^2}=1+4d\end{array}\right.$⇒q=3或1(舍去),d=2,
所以an=3n,bn=2n+1.
(2)由题意,得cn=an+bn=3n+(2n+1),
Sn=c1+c2+…+cn=(3+5+7+…+2n+1)+(3+32+…+3n
=$\frac{n(3+2n+1)}{2}$+$\frac{{3(1-{3^n})}}{1-3}$=$\frac{{{3^{n+1}}}}{2}$+n2+2n-$\frac{3}{2}$.

点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:分组求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点F是AB边上动点,点E是棱B1B的中点.
(Ⅰ)求证:D1F⊥A1D;
(Ⅱ)求多面体ABCDED1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知不等式ax2+5x+b>0的解集是{x|2<x<3},则不等式bx2-5x+a>0的解集是(-$\frac{1}{2}$,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,AB=2,BC=1,∠ABC=120°若将△ABC绕直线BC旋转一周,则所形的旋转体的体积是π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若cosα=$\frac{1}{2}$,α∈(0,π),则cos($\frac{π}{2}$-α)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin x+cos x.
(1)若f(x)=2f(-x),求$\frac{co{s}^{2}x-sinxcosx}{1+si{n}^{2}x}$的值;
(2)求函数F(x)=f(x)f(-x)+f 2(x),x∈(0,$\frac{π}{2}$)的值域和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,已知点O(0,0),A(3,0),B(0,3),C(cosα,sinα).
(1)若$\overrightarrow{AC}•\overrightarrow{BC}=-1$,求$\frac{{2{{sin}^2}α+sin2α}}{1+tanα}$的值;
(2)若f(α)=-2cos2α-tsinα-t2+2在$α∈(\frac{π}{2},\frac{3π}{2})$时有最小值-1,求常数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn且a=$\frac{1}{2}$,an=-2Sn•Sn-1,(n≥2).
(1)数列{$\frac{1}{{S}_{n}}$}是否为等差数列,证明你的结论;
(2)求Sn,an
(3)求证:S${\;}_{1}^{2}$+S${\;}_{2}^{2}$+S${\;}_{3}^{2}$+…S${\;}_{n}^{2}$<$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB⊥AC,AB=AC=AA1,D为BC的中点.
(1)证明:A1B⊥平面AB1C;
(2)求直线A1D与平面AB1C所成的角的大小.

查看答案和解析>>

同步练习册答案