【题目】如图,椭圆的离心率,且椭圆C的短轴长为.
(1)求椭圆的方程;
(2)设椭圆上的三个动点.
(i)若直线过点D,且点是椭圆的上顶点,求面积的最大值;
(ii)试探究:是否存在是以为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.
【答案】(1) 椭圆的方程是
面积的最大值为
不存在是以为中心的等边三角形.
【解析】
利用离心率以及短轴长,求出椭圆中.即可求椭圆的方程;
由已知,直线的斜率存在,设直线方程,联立直线与椭圆方程,利用韦达定理,弦长公式,推出面积的表达式,通过换元,利用导数求出面积的最大值.
假设存在是以为中心的等边三角形.
当在轴上时,推出与为等边三角形矛盾.
当在轴上时,推出与为等边三角形矛盾.
当不在坐标轴时,推出与为等边三角形矛盾.故得解.
(1)由已知得 ,解得 ,
所以椭圆的方程是
由已知可知直线的斜率定存在,设直线的方程为,
,
由 得,所以
所以,
又,所以,
令,
所以,
令,则
所以在上单调递增,所以当时,此时,有最小值此时有最大值.
故得解.
不存在是以为中心的等边三角形.理由如下:
假设存在是以为中心的等边三角形.
当在轴上时,的坐标为,则关于轴对称,的中点在轴上.
又为的中心,所以,可知,
从而,即.
所以与为等边三角形矛盾.
当在轴上时,的坐标为,则关于轴对称,的中点在轴上.
又为的中心,所以,可知,
从而,即.
所以与为等边三角形矛盾.
当不在坐标轴时,设,的中点为,则,
又为的中心,则,可知.
设,则,
又,两式相减得,
从而,
所以,
所以与不垂直,与等边矛盾.
综上所述,不存在是以为中心的等边三角形.
科目:高中数学 来源: 题型:
【题目】设正四面体ABCD的所有棱长都为1米,有一只蚂蚁从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,则它爬了4米之后恰好位于顶点A的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国“一带一路”战略构思提出后, 某科技企业为抓住“一带一路”带来的机遇, 决定开发生产一款大型电子设备, 生产这种设备的年固定成本为万元, 每生产台,需另投入成本(万元), 当年产量不足台时, (万元); 当年产量不小于台时 (万元), 若每台设备售价为万元, 通过市场分析,该企业生产的电子设备能全部售完.
(1)求年利润 (万元)关于年产量(台)的函数关系式;
(2)年产量为多少台时 ,该企业在这一电子设备的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明设计了一款正四棱锥形状的包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰三角形,再沿虚线折起,使得四个点重合于图中的点,正好形成一个正四棱锥形状的包装盒,设正四棱锥底面正方形的边长为.
(1)试用表示该四棱锥的高度,并指出的取值范围;
(2)若要求侧面积不小于,求该四棱锥的高度的最大值,并指出此时该包装盒的容积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点P为两直线l1:3x+4y﹣2=0和l2:2x+y+2=0的交点.
(1)求过P点且与直线3x﹣2y+4=0平行的直线方程;
(2)求过原点且与直线l1和l2围成的三角形为直角三角形的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线经过椭圆的右焦点.
(1)求实数的值;
(2)设直线与椭圆相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,已知矩形中,,,为的中点.将沿折起,使得平面平面(如图②),并在图②中回答如下问题:
(1)求证:;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com