精英家教网 > 高中数学 > 题目详情
14.等差数列{an}中,已知a10=23.
(1)若a25=-22,问此数列从第几项开始为负?
(2)若数列从第17项起各项均为负,求公差d的取值范围.

分析 (1)设等差数列的公差为d,运用通项公式,求得d=-3,求得通项,再令an<0,解不等式即可得到所求n;
(2)设公差为d,由题意可得a17<0,a16≥0,由通项公式,解不等式,即可得到d的范围.

解答 解:(1)设等差数列的公差为d,
由a10=23,a25=-22,可得d=$\frac{{a}_{25}-{a}_{10}}{15}$=-3.
即有an=a10+(n-10)d=23-3(n-10)=53-3n,
令an<0,即有53-3n<0,解得n>$\frac{53}{3}$,
由n为整数,则n最小为18.
则此数列从第18项开始为负;
(2)设公差为d,由题意可得
a17<0,a16≥0,
即为a10+7d<0,a10+6d≥0,
即有23+7d<0,23+6d≥0,
解得-$\frac{23}{6}$≤d<-$\frac{23}{7}$.

点评 本题考查等差数列的通项公式的运用,考查不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某市营业区内住宅电话通话费为前3分钟0.20元(不足3分钟按3分钟计算),以后每分钟0.10元(不足1分钟按1分钟来计算).
(1)在直角坐标系内,画出通话6分钟内(包括6分钟)的通话费y(元)关于通话时间t(分钟)的函数图象;

(2)如果一次通话t分钟(t>0),写出通话费y(元)关于通话时间t(分钟)的函数关系式;(可用符号<t>表示不小于t的最小整数)
(3)如果通话时间较长,可以采用分若干次拨打电话的方法,某人通话91分钟,计算这个人用最省的时间的拨打方法比用一次拨打少花多少钱.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)的定义域为(-∞,0)∪(0,+∞),图象关于原点对称,且当x<0时,xf′(x)<2f(x)恒成立,则f(1)、-$\frac{f(-4)}{16}$、$\frac{f(\sqrt{231})}{231}$的大小关系是(  )
A.$\frac{f(\sqrt{231})}{231}$<-$\frac{f(-4)}{16}$<f(1)B.f(1)<-$\frac{f(-4)}{16}$<$\frac{f(\sqrt{231})}{231}$
C.-$\frac{f(-4)}{16}$<$\frac{f(\sqrt{231})}{231}$<f(1)D.$\frac{f(\sqrt{231})}{231}$<f(1)<-$\frac{f(-4)}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设定义在[-2,2]上的函数f(x)单调递减,若f(|1-m|)<f(2m),实数m的取值范围是[-1,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+alnx(a≠0,a∈R).
(1)若对任意x∈[1,+∞)使得f(x)≥(a+2)x恒成立,求实数a的取值范围;
(2)证明:对n∈N*,不等式$\frac{1}{ln(n+1)}$+$\frac{1}{ln(n+2)}$+…+$\frac{1}{ln(n+2013)}$>$\frac{2013}{n(n+2013)}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义在R上的奇函数f(x)关于直线x=1对称,且在[0,1]上的解析式是f(x)=2x.
(1)试画出函数在[-2,8]上的图象;
(2)若直线y=ax,(a>0)与函数f(x)的图象恰有5个交点,求a的值;
(3)若直线y=ax,(a>0)与函数f(x)的图象有7个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.判断函数f(x)=$\sqrt{x}$在[0,+∞)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.依次计算数列:(1-$\frac{1}{4}$),(1-$\frac{1}{4}$)(1-$\frac{1}{9}$),(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$),(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)(1-$\frac{1}{25}$),…的前4项的值,由此猜想(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)(1-$\frac{1}{25}$)…(1-$\frac{1}{(n+1)^{2}}$)(n∈N*)的结果,并用数字归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知实数x,y满足3x2+2y2=1,求:
(1)x2+y2的取值范围;
(2)xy的取值范围.

查看答案和解析>>

同步练习册答案