精英家教网 > 高中数学 > 题目详情
如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.

(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.
(1)详见解析,(2)详见解析.

试题分析:(1)证明线线平行,一般思路为利用线面平行的性质定理与判定定理进行转化. 因为四边形ABCD是矩形,所以AB∥CD,因为平面CDEF,平面CDEF,所以AB∥平面CDEF.因为平面ABFE,平面平面,所以AB∥EF.(2)证明面面垂直,一般利用其判定定理证明,即先证线面垂直. 因为DE⊥平面ABCD,平面ABCD,所以DE⊥BC.因为BC⊥CD,平面CDEF,所以BC⊥平面CDEF.因为BC平面BCF,平面BCF⊥平面CDEF.
【证】(1)因为四边形ABCD是矩形,所以AB∥CD,
因为平面CDEF,平面CDEF,
所以AB∥平面CDEF.         4分                             
因为平面ABFE,平面平面
所以AB∥EF.                                                7分
(2)因为DE⊥平面ABCD,平面ABCD,
所以DE⊥BC.                                                9分
因为BC⊥CD,平面CDEF,
所以BC⊥平面CDEF.                                        12分
因为BC平面BCF,平面BCF⊥平面CDEF.                   14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(13分)(2011•广东)如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为的中点,O1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.

(1)证明:O1′,A′,O2,B四点共面;
(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′G

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l⊥平面α,直线m?平面β,有下面四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.
其中正确的命题(  )
A.①②B.②④C.①③D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点分别是正方体的棱的中点,点分别是线段上的点,则满足与平面平行的直线有(   )
A.0条B.1条C.2条D.无数条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n是两条不同的直线,是两个不同的平面,则
A.若m//,n//,则m//nB.若m//,m//,则//
C.若m//n,m,则nD.若m//,则m

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD中,若,则所成角为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是平面内的两条不同直线,l是平面外的一条直线,则的(     )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案