精英家教网 > 高中数学 > 题目详情

【题目】袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为. 现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,……,取后均不放回,直到有一人取到白棋即终止. 每枚棋子在每一次被摸出的机会都是等可能的.表示取棋子终止时所需的取棋子的次数.

(1)求随机变量的概率分布列和数学期望

(2)求甲取到白棋的概率.

【答案】(1)见解析;(2).

【解析】试题分析:(1)先出白子个数进而可得随机变量的所有可能取值是1,2,3,4,5,分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果;(2)记事件甲取到白球则事件包括以下三个互斥事件: 甲第一次取球时取出白球 甲第二次取球时取出白球”;甲第三次取球时取出白球”. 利用互斥事件概率加法公式可得:甲取到白球的概率.

试题解析:设袋中白棋共有个,,则依题意知:,∴

,解之得舍去).

(1)袋中的7枚棋子34黑,随机变量的所有可能取值是1,2,3,4,5.

.

(注:此段4分的分配是每错1个扣1分,错到4个即不得分.)

随机变量的概率分布列为:

1

2

3

4

5

所以.

(2)记事件甲取到白棋”,则事件包括以下三个互斥事件:

“甲第1次取棋时取出白棋”;

“甲第2次取棋时取出白棋”;

“甲第3次取棋时取出白棋”.

依题意知:

(注:此段3分的分配是每错1个扣1分,错到3个即不得分.)

所以,甲取到白棋的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 a∈R,函数 f(x)=a﹣
(1)证明:f(x)在(﹣∞,+∞)上单调递增;
(2)若f(x)为奇函数,求:
①a的值;
②f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司13个部门接受的快递的数量如茎叶图所示,则这13个部门接收的快递的数量的中位数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,且其图象关于直线x=0对称,则(
A.y=f(x)的最小正周期为π,且在(0, )上为增函数
B.y=f(x)的最小正周期为π,且在(0, )上为减函数
C.y=f(x)的最小正周期为 ,且在 上为增函数
D.y=f(x)的最小正周期为 ,且在 上为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为, 过点, 记椭圆的左顶点为.

(1)求椭圆的方程;

(2)设垂直于轴的直线交椭圆于两点, 试求面积的最大值;

(3)过点作两条斜率分别为的直线交椭圆于两点,且, 求证: 直线恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p> ),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:

(1)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;

成绩小于100分

成绩不小于100分

合计

甲班

a=

b=

50

乙班

c=24

d=26

50

合计

e=

f=

100


(2)现从乙班50人中任意抽取3人,记ξ表示抽到测试成绩在[100,120)的人数,求ξ的分布列和数学期望Eξ.
附:K2= ,其中n=a+b+c+d

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.204

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}当n≥2时满足 = + ,且a3a5a7= + + =9,Sn是数列{ }的前n项和,则S4=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函数f(x)的单调区间;
(2)当m≥1时,讨论函数f(x)与g(x)图象的交点个数.

查看答案和解析>>

同步练习册答案