精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面是直角梯形,,
平面平面,若,,且

(1)求证:平面; 
(2)设平面与平面所成二面角的大小为,求的值.

(1)参考解析;(2)

解析试题分析:(1)由所以.又,.在三角形PAO中由余弦定理可得.所以.即.又平面平面且平面平面=AD,平面PAD.所以平面.
(2)由题意可得建立空间坐标系,写出相应点的坐标,平面PAD的法向量易得,用待定系数写出平面PBC的法向量,根据两向量的法向量夹角的余弦值,求出二面角的余弦值.
(1)因为 ,所以,            1分
中,由余弦定理
,                   3分
,                      4分
,                                     5分
平面平面,平面平面,平面
平面.                          6分

(2)如图,过,则两两垂直,以为坐标原点,分别以所在直线为轴,建立空间直角坐标系,                      7分

          8分

,        9分
设平面的一个法向量为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:

(1)·
(2)·
(3)EG的长;
(4)异面直线AG与CE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面.
(1)证明:平面;
(2)求二面角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,,平面⊥平面是线段上一点,
(1)证明:⊥平面
(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,平面 是的中点,
(1)证明:∥平面
(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,底面分别是棱的中点,为棱上的一点,且//平面.
(1)求的值;
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,直线平面,且
,又点分别是线段的中点,且点是线段上的动点.
证明:直线平面
(2) 若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,,点在平面内的射影恰为的重心,M为侧棱上一动点.

(1)求证:平面平面
(2)当M为的中点时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知向量,若,则       .

查看答案和解析>>

同步练习册答案