精英家教网 > 高中数学 > 题目详情
18.对于函数f(x)=a+$\frac{1}{{3}^{x}+1}(a∈R)$
(1)判断并证明函数f(x)的单调性;
(2)是否存在实数a使函数f(x)为奇函数?若存在求出a值;若不存在,请说明理由.

分析 (1)先判断函数的单调性,再利用单调性的定义证题步骤:取值、作差、变形定号、下结论,即可证得;
(Ⅱ)假设存在a满足条件,求出函数的定义域,利用函数奇偶性的定义得f(-x)=-f(x),化简后求值.

解答 解:(1)单调递减,证明如下:
设x1<x2,则f(x1)-f(x2)=a+$\frac{1}{{3}^{{x}_{1}}+1}$-(a+$\frac{1}{{3}^{{x}_{2}}+1}$)
=$\frac{{3}^{{x}_{2}}+1-({3}^{{x}_{1}}+1)}{{(3}^{{x}_{1}}+1)({3}^{{x}_{2}}+1)}$=$\frac{{3}^{{x}_{2}}-{3}^{{x}_{1}}}{{(3}^{{x}_{1}}+1)({3}^{{x}_{2}}+1)}$,
${3}^{{x}_{1}}-1$∴
∵x1<x2,∴${3}^{{x}_{1}}<{3}^{{x}_{2}}$,则${3}^{{x}_{2}}-{3}^{{x}_{1}}>0$,
又${3}^{{x}_{1}}+1>0$,${3}^{{x}_{2}}+1>0$,
∴f(x1)-f(x2)>0,则f(x1)>f(x2
∴f(x)在(-∞,+∞)上是减函数;…6分
(2)假设存在实数a满足条件,
∵函数f(x)的定义域是R,∴f(-x)=-f(x),
则$a+\frac{1}{{3}^{-x}+1}$=-($a+\frac{1}{{3}^{x}+1}$),
化简得2a=-$\frac{1}{{3}^{x}+1}$-$\frac{{3}^{x}}{{3}^{x}+1}$=-1,解得a=$-\frac{1}{2}$,
∴存在a=$-\frac{1}{2}$使f(x)是奇函数.

点评 本题考查函数单调性的证明及奇偶性的定义,掌握单调性的定义证题步骤是关键,考查化简、变形能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.观察下面几个算式,找出规律:
1+2+1=4;   
1+2+3+2+1=9;   
1+2+3+4+3+2+1=16;
1+2+3+4+5+4+3+2+1=25;

利用上面的规律,请你算出1+2+3+…+99+100+99+…+3+2+1=10000.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个说法:其中正确说法的个数是(  )个
①方程x2+2x-7=0的两根之和为-2,两根之积为-7;
②方程x2-2x+7=0的两根之和为-2,两根之积为7;
③方程3x2-7=0的两根之和为0,两根之积为$-\frac{7}{3}$;
④方程3x2+2x=0的两根之和为-2,两根之积为0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了了解某种进口茶叶的质量(单位:克),从中抽取若干包进行检查,获得样本的频率分布直方图如图所示.若已知样本中质量在[155.5,160.5)内的茶叶有10包,则样本容量为(  )
A.150B.100C.70D.50

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.(理)在三棱锥S-ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,平面SBC与平面SAC所成的角为60°,且三棱锥S-ABC的体积为$\frac{{9\sqrt{3}}}{2}$,则三棱锥的外接球的半径为(  )
A.3B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线方程y2=2px(p>0),点A(x1,y1),点B(x2,y2)是抛物线上的两个动点,A、B两点分别位于x轴两侧,已知当OA⊥OB时,x1x2=4p2,y1y2=-4p2,且直线AB过定点(2p,0)
(1)若$\overrightarrow{OA}$$•\overrightarrow{OB}$=3,当p=1时,求x1x2,y1y2的值;
(2)若$\overrightarrow{OA}$$•\overrightarrow{OB}$=t(t≥0),试证明直线AB过定点,并求出定点坐标;
(3)在(2)条件下,kOA为直线OA的斜率,kOB为直线OB的斜率,若弦AB中点M在直线y=2上,证明kOA+KOB为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|-1≤x<2},B={x|-x≥0},则A∩B等于(  )
A.{x|0≤x<2}B.{x|-2<x≤-1}C.{x|-2<x≤0}D.{x|-1≤x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出下列四个命题:
①如果命题“¬p”与命题“p∨q”都是真命题,那么命题q一定是真命题;
②命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”;
③若命题p:?x≥0,x2-x+1<0,则¬p:?x<0,x2-x+1≥0;
④设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的充分而不必要条件.  
其中为真命题的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,四边形ABCD为直角梯形,AB∥CD,AB⊥BC,△ABE为等边三角形,且平面ABCD⊥平面ABE,AB=2CD=2BC=2,P为CE中点.
(1)求证:AB⊥DE;
(2)求三棱锥D-ABP的体积.

查看答案和解析>>

同步练习册答案