精英家教网 > 高中数学 > 题目详情
16.如图,在正三角形ABC中,D、E、F分别为各边的中点,H、G、I、J分别为AD、AF、BE、DE的中点,则将△ABC沿DE、EF、DF折成三棱锥后,则异面直线GH与IJ所成的角的大小为(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 可根据条件画出图形,并可判断该三棱锥为棱长等于底面边长的正三棱锥,然后可分别用向量$\overrightarrow{AD},\overrightarrow{AE},\overrightarrow{AF}$表示出向量$\overrightarrow{GH}$和$\overrightarrow{IJ}$,从而可求出$\overrightarrow{GH}•\overrightarrow{IJ}$,根据向量夹角的计算公式即可求出$cos<\overrightarrow{GH},\overrightarrow{IJ}>$,从而得出异面直线所成的角.

解答 解:如图,根据题意知,折后的三棱锥为棱长和底面边长都相等的正三棱锥,设棱长为1,且:
$\overrightarrow{GH}=\overrightarrow{AH}-\overrightarrow{AG}$=$\frac{1}{2}\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AF}$;
$\overrightarrow{IJ}=\frac{1}{2}\overrightarrow{AD}$;
且$|\overrightarrow{GH}|=\frac{1}{2},|\overrightarrow{IJ}|=\frac{1}{2}$,$\overrightarrow{GH}•\overrightarrow{IJ}=\frac{1}{4}{\overrightarrow{AD}}^{2}-\frac{1}{4}\overrightarrow{AF}•\overrightarrow{AD}$=$\frac{1}{4}-\frac{1}{8}=\frac{1}{8}$;
∴$cos<\overrightarrow{GH},\overrightarrow{IJ}>=\frac{\overrightarrow{GH}•\overrightarrow{IJ}}{|\overrightarrow{GH}||\overrightarrow{IJ}|}=\frac{\frac{1}{8}}{\frac{1}{4}}=\frac{1}{2}$;
∴直线GH与IJ所成的角的大小为$\frac{π}{3}$.
故选C.

点评 考查正三棱锥的定义,能根据条件画出折叠后的图形,以及向量加法的平行四边形法则,向量减法的几何意义,以及三角形中位线的性质,向量夹角的余弦公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知f(x)=ax-$\frac{a}{x}$-10lnx,h(x)=-x2+(m-2)x+6.
(Ⅰ)若函数f(x)在其定义域上是增函数,求实数a的取值范围;
(Ⅱ)当a=4时,对于任意x1,x2∈(0,1),均有h(x1)≥f(x2)恒成立,试求参数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.几何体的俯视图为一边长为2的正三角形,则该几何体的各个面中,面积最大的面的面积为(  )
A.3B.$\sqrt{6}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2,c=3,cosB=$\frac{1}{4}$,则sinC的值为$\frac{3\sqrt{6}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.从一堆产品(其中正品与次品数均多于2件)中任取2件,观察正品件数和次品件数,则下列每对事件中,是对立事件的是(  )
A.恰好有1件次品和恰好有两件次品B.至少有1件次品和全是次品
C.至少有1件次品和全是正品D.至少有1件正品和至少有1件次品

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,圆M与圆N交于A、B两点,以A为切点作两圆的切线分别交圆M、圆N于C、D两点,延长DB、CB分别交圆M、圆N于E、F.已知DB=10、CB=5.
(Ⅰ)求AB的长;
(Ⅱ)求证:CF=DE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=logax2+a|x|,若f(-3)<f(4),则不等式f(x2-2x)≤f(3)的解集为(  )
A.(-1,3)B.[-1,3]C.(-∞,-1)∪(3,+∞)D.[-1,0)∪(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线C1:y2=2px(p>0)经过圆C2:x2+y2-2x-4$\sqrt{2}$y-16=0的圆心,过C1的焦点的直线l与抛物线相交于A,B两点,O为坐标原点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一组数据2x1+1,2x2+1,…,2xn+1的方差为8,则数据x1,x2,…,xn的标准差为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案