精英家教网 > 高中数学 > 题目详情
17.若直线2ax+by-2=0(a>0,b>0)始终平分圆x2+y2-2x-4y-1=0的面积,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为(  )
A.5B.7C.2$\sqrt{2}$D.9

分析 利用直线2ax+by-2=0(a>0,b>0)始终平分圆x2+y2-2x-4y-1=0的面积,可得圆的圆心(1,2)在直线2ax+by-2=0(a>0,b>0)上,再利用“1”的代换,结合基本不等式,即可求出的最小值.

解答 解:由题意,圆的圆心(1,2)在直线2ax+by-2=0(a>0,b>0)上
∴2a+2b-2=0(a>0,b>0)
∴a+b=1
∴$\frac{1}{a}$+$\frac{4}{b}$=(a+b)($\frac{1}{a}$+$\frac{4}{b}$)=5+$\frac{b}{a}$+$\frac{4a}{b}$≥5+2×2=9
当且仅当$\frac{b}{a}$=$\frac{4a}{b}$,即a=$\frac{1}{3}$,b=$\frac{2}{3}$时,$\frac{1}{a}$+$\frac{4}{b}$的最小值为9
故选:D.

点评 本题考查圆的对称性,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.f(x)=ax3+3x2+2,若f′(-1)=7,则a的值等于(  )
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在数列{an}中,已知a1=$\frac{1}{4}$,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{4}$,bn=log${\;}_{\frac{1}{4}}$an(n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数Z1=3+i,Z2=2-i,则$\frac{{z}_{1}}{{z}_{2}}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{AB}$,$\overrightarrow{AC}$均为非零向量,$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=2,点M是线段BC(含两端点)上的一点,且$\overrightarrow{AM}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=1,则|$\overrightarrow{AM}$|的取值范围是A={x|$\frac{1}{8}$≤x≤1}的充分不必要条件(填“充分不必要”,“必要不充分”,“充分必要”,“既不充分也不必要”四者之一).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线l与圆x2+y2=1交于P、Q两点,P、Q的横坐标为x1,x2,△OPQ的面积为$\frac{1}{2}$(O为坐标原点),则x12+x22=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.A,B是两个集合,A={y|y=x2-2015},B={2015,y},其中y∈A,则y的取值集合是{y|y≥-2015,且y≠2015}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{1-lo{g}_{2}x,x>1}\end{array}\right.$,则f(f(8))=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数${m^2}-2m+\frac{{{m^2}+m-6}}{m}i$为纯虚数,则实数m的值为(  )
A.m≠2且m≠3B.m≠2,m≠3且m≠0C.m=3D.不存在

查看答案和解析>>

同步练习册答案