精英家教网 > 高中数学 > 题目详情
5.函数f(x)=3x与$f(x)={({\frac{1}{3}})^x}$的图象关于(  )
A.坐标原点对称B.x轴对称C.y轴对称D.直线y=x对称

分析 两个指数函数的底数互为倒数,故其图象关于y轴对称.

解答 解:∵3与$\frac{1}{3}$互为倒数,
∴f(x)=3x与$f(x)={({\frac{1}{3}})^x}$的图象关于y轴对称.
故选C.

点评 本题考查了指数函数的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.二次函数y=x2+bx+c的图象向左平移3个单位,再向上平移2个单位,得到二次函数y=x2-2x+1的图象,则c=14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=7,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=5或9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在矩形ABCD中,AB=1,BC=2,E为BC的中点,点F在DC边上,则$\overrightarrow{AE}•\overrightarrow{AF}$的最大值为(  )
A.3B.4C.5D.与F点的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点P是底边长为2$\sqrt{3}$,高为2的正三棱柱表面上的动点,Q是该棱柱内切球表面上的动点,则|PQ|的取值范围是(  )
A.[0,$\sqrt{3}+1$]B.[0,$\sqrt{5}+1$]C.[0,3]D.[1,$\sqrt{5}+1$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列各式的值.
(1)${({\frac{9}{4}})^{\frac{1}{2}}}+(9.6{)^0}-{({\frac{8}{27}})^{-\frac{1}{3}}}$;
(2)log28+lg25+lg4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知关于x的二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1表示焦点在x轴上且离心率小于$\frac{\sqrt{3}}{2}$的椭圆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$y=\frac{{\sqrt{{x^2}-1}}}{x-1}$的定义域是(  )
A.{x|-1≤x<1}B.{x|x≤-1或x>1}C.{x|-1≤x≤1}D.{x|x≤-1或x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\frac{x}{{x}^{2}+x+1}$的值域是(  )
A.[-1,$\frac{1}{3}$)B.(-1,$\frac{1}{3}$]C.(-1,$\frac{1}{3}$)D.[-1,$\frac{1}{3}$]

查看答案和解析>>

同步练习册答案