A. | 一定大于0 | B. | 一定小于0 | C. | 等于0 | D. | 正负都有可能 |
分析 由题意判断出函数的奇偶性,由x1+x2>0移向得x1>-x2,再结合函数的单调性得f(x1)+f(x2)>0,利用类比推理得f(x1)+f(x3)>0.f(x2)+f(x3)>0,三个式子相加后判断符号即可.
解答 解:∵f(-x)+f(x)=0,∴f(x)定义在R上的奇函数,
∵奇函数f(x)是定义在R上的增函数,且x1+x2>0,
∴x1>-x2,则f(x1)>f(-x2),
即f(x1)>-f(x2),则f(x1)+f(x2)>0.
同理可得f(x1)+f(x3)>0.f(x2)+f(x3)>0.
∴f(x1)+f(x2)+f(x3)>0.
故选A.
点评 本题考查了函数的单调性和奇偶性的综合应用,以及类比推理的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x=π | B. | x=$\frac{π}{4}$ | C. | x=$\frac{π}{2}$ | D. | x=$\frac{π}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=-$\frac{1}{2}$cos2x | B. | y=$\frac{1}{2}$cos2x | C. | y=-$\frac{1}{2}$sin2x | D. | y=$\frac{1}{2}$sin2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ${a_n}=\frac{n}{n+1}({n∈{N^*}})$ | B. | ${a_n}={n^2}-1({n∈{N^*}})$ | ||
C. | ${a_n}=5n+{({-1})^n}({n∈{N^*}})$ | D. | ${a_n}=3n-1({n∈{N^*}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com