精英家教网 > 高中数学 > 题目详情

如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(1)求证:AB为圆的直径;
(2)若AC=BD,求证:.

(1)证明见解析;(2)证明见解析.

解析试题分析:
解题思路:(1)利用直径所对的圆周角为直角,证明即可;(2)利用全等三角形即(1)结论证明.
规律总结:本题考查几何证明中的直线与圆的位置关系,培养学生的观察能力以及分析问题的能力.
试题解析:(1)因为PD=PG,所以∠PDG=∠PGD.
由于PD为切线,故∠PDA=∠DBA,又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.
由于AF垂直EP,所以∠PFA=90°,于是∠BDA=90°,故AB是直径.
(2)连接BC,DC.

由于AB是直径,故∠BDA=∠ACB=90°,
在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,
从而Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.
又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.
由于
于是ED是直径,由(1)得ED=AB.
考点:直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

(几何证明选做题)如图,圆上一点在直径上的射影为,则           

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,都经过两点,的切线,交于点的切线,交于点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

[选修4-1:几何证明选讲]
如图,是圆的直径,是圆上位于异侧的两点,证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.

(1)求∠ADF的度数;
(2)AB=AC,求AC∶BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(1)求证:AB为圆的直径;
(2)若AC=BD,求证:AB=ED.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆O的内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一
点,AE为圆O的切线,求证:CD2=BD·EC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知A、B、C三点的坐标分别为(0,1)、(-1,0)、(1,0),P是线段AC上一点,BP交AO于点D,设三角形ADP的面积为S,点P的坐标为(x,y),求S关于x的函数表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

.在平行四边形ABCD中,AB=3,AD=2,,E是DC的中点, F是AE的中点,则           

查看答案和解析>>

同步练习册答案