精英家教网 > 高中数学 > 题目详情
(2011•奉贤区二模)(理)在空间直角坐标系O-xyz中,满足条件[x]2+[y]2+[z]2≤1的点(x,y,z)构成的空间区域Ω2的体积为V2([x],[y],[z]分别表示不大于x,y,z的最大整数),则V2=
7
7
分析:根据方程,对于x,y≥0时,求出x,y的整数解,分别对|[x]|=1、0时确定x的范围,对应的y,z的范围,求出体积,再求其和.

建立空间直角坐标系O-xyz,是以(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,1,1),(1,0,1),(0,1,0)为顶点体积为1的立方体向x轴正负方向、y轴正负方向、z轴正负方向各延伸一个体积为1的立方体,即由这7个立方体组成的图形,体积为7.
解答:解:满足条件[x]2+[y]2+[z]2≤1的点(x,y,z)x,y,z≥0时,[x],[y],[z]的整解有(0,0,0),(0,0,1),(0,1,0),(1,0,0)(0,-1,0),(0,0,-1),(-1,0,0)
显然[x]的最大值是1
|[x]|=1时,1≤x<2,或者-1≤x<0,|[y]|=0,0≤y<1,|[z]|=0,0≤z<1,所围成的区域是棱长为1的正方体
同理可求|[x]|=0时,0≤x<1,|[y]|=1或|[z]|=1的体积
V2=7×1=7
故答案为:7
点评:本题主要考查的点的轨迹的求解,几何体的体积的求解,考查探究性问题,是创新题,考查分类讨论思想,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(文) 如图都是由边长为1的正方体叠成的图形.例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位.依此规律,则第n个图形的表面积是
3n(n+1)
3n(n+1)
个平方单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)已知|
a
|=|
b
|=2,
a
b
的夹角为
π
3
,则
b
a
上的投影为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(文)设x,y满足约束条件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值为
1
4
,则a的值
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)用2π平方米的材料制成一个有盖的圆锥形容器,如果在制作过程中材料无损耗,且材料的厚度忽略不计,底面半径长为x,圆锥母线的长为y
(1)建立y与x的函数关系式,并写出x的取值范围;
(2)圆锥的母线与底面所成的角大小为
π3
,求所制作的圆锥形容器容积多少立方米(精确到0.01m3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)若复数3+i是实系数一元二次方程x2-6x+b=0的一个根,则b=
10
10

查看答案和解析>>

同步练习册答案