精英家教网 > 高中数学 > 题目详情

【题目】我国古代典籍《周易》用描述万物的变化,每一卦由六爻组成.其中有一种起卦方法称为金钱起卦法,其做法为:取三枚相同的钱币合于双手中,上下摇动数下使钱币翻滚摩擦,再随意抛撒钱币到桌面或平盘等硬物上,如此重复六次,得到六爻.若三枚钱币全部正面向上或全部反面向上,就称为变爻.若每一枚钱币正面向上的概率为,则一卦中恰有两个变爻的概率为(

A.B.C.D.

【答案】D

【解析】

根据古典概型求得三枚钱币全部正面或反面向上的概率,求一卦中恰有两个变爻的概率实际为求六次独立重复试验中发生两次的概率,根据独立重复试验的概率求得其值.

由已知可得三枚钱币全部正面或反面向上的概率,求一卦中恰有两个变爻的概率实际为求六次独立重复试验中发生两次的概率,

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为,(为参数).

1)请写出直线的参数方程;

2)求直线与曲线交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

4

19

20

5

1

图1:乙套设备的样本的频率分布直方图

(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

,求的期望.

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:)的左顶点为A,离心率为,点在椭圆C.

1)求椭圆C的方程;

2)若直线)与椭圆C交于EF两点,直线分别与y轴交于点MN,求证:x轴上存在点P,使得无论非零实数k怎样变化,以为直径的圆都必过点P,并求出点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和分别为,且对任意的都有,已知,数列是公差不为0的等差数列,且各项均为非负整数.

1)求证:数列是等差数列;

2)若数列的前4项删去1项后按原来顺序成等比数列,求所有满足条件的数列

3)若,且,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据气象部门预报,在距离某个码头A南偏东45°方向的600km处的热带风暴中心B正以30km/h的速度向正北方向移动,距离风暴中心450km以内的地区都将受到影响,从现在起经过___小时后该码头A将受到热带风暴的影响(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是椭圆上三个不同的点,F为其右焦点,且成等差数列

1)求椭圆的方程;

2)求的值;

3)若线段AC的垂直平分线与x轴交点为D,求直线BD的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.若等比数列的前项和为,则也成等比数列.

B.命题的极值点,则的逆命题是真命题.

C.为真命题为真命题的充分不必要条件.

D.命题,使得的否定是:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱ABCDA1B1C1D1中,∠BAD=∠BCD=90°,∠ADC=60°且AD=CD,BB1⊥平面ABCD,BB1=2AB=2.

1)证明:ACB1D.

2)求BC1与平面B1C1D所成角的正弦值.

查看答案和解析>>

同步练习册答案