精英家教网 > 高中数学 > 题目详情

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为13,且成绩分布在[40100],分数在80以上(80)的同学获奖.按文、理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(1)a的值,并计算所抽取样本的平均值 (同一组中的数据用该组区间的中点值作代表)

(2)填写下面的2×2列联表,并判断能否有超过95%的把握认为“获奖与学生的文、理科有关”

文科生

理科生

合计

获奖

5

不获奖

合计

200

附表及公式:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)答案见解析;(2)答案见解析.

【解析】试题分析:(1)利用频率和为1,求a的值,利用同一组中的数据用该组区间的中点值作代表,计算所抽取样本的平均值;(2)求出K2,与临界值比较,即可得出结论

解析:

(1)a[1(0.010.0150.030.0150.005)×10]÷100.025

45×0.155×0.1565×0.2575×0.385×0.1595×0.0569.

(2)文科生人数为200×50,获奖学生人数为200×(0.0150.005)×1040,故2×2列联表如下:

文科生

理科生

合计

获奖

5

35

40

不获奖

45

115

160

合计

50

150

200

因为K24.167>3.841

所以有超过95%的把握认为“获奖与学生的文、理科有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当四边形面积取最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项的和为Sn , 已知a1=1, =12.
(1)求{an}的通项公式an
(2)bn= ,bn的前n项和Tn , 求证;Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图像可以由y=cos2x的图像先纵坐标不变横坐标伸长到原来的2倍,再横坐标不变纵坐标伸长到原来的2倍,最后向右平移个单位而得到.

⑴求f(x)的解析式与最小正周期

⑵求f(x)在x∈(0,π)上的值域与单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱,侧面.

(Ⅰ)若分别是的中点,求证:

(Ⅱ)若三棱柱的各棱长均为2,侧棱与底面所成的角为,问在线段上是否存在一点,使得平面?若存在,求的比值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sin( + )sin( )﹣sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x= 对称.
(1)若存在x∈[0, ),使等式[g(x)]2﹣mg(x)+2=0成立,求实数m的最大值和最小值
(2)若当x∈[0, ]时不等式f(x)+ag(﹣x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[﹣0.25]=﹣1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[tt]=n同时成立,则正整数n的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga (其中a>0,且a≠1).

(1)求函数f(x)的定义域;

(2)判断函数f(x)的奇偶性并给出证明;

(3)若x时,函数f(x)的值域是[0,1],求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,该程序运行后输出的值是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案