精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2-x-1 (x≤0)
x2   (x>0)
,若函数y=f(x)的图象与函数y=x+a的图象恰有两个公共点,则实数a的取值范围为(  )
分析:由题意,联立
y=x+a
y=x2
,则x2-x-a=0,根据△=1+4a=0,可得a=-
1
4
,此时函数y=f(x)的图象与函数y=x+a的图象恰有一个公共点,再根据函数的图象,要使函数y=f(x)的图象与函数y=x+a的图象恰有两个公共点,可求实数a的取值范围.
解答:解:由题意,联立
y=x+a
y=x2
,则x2-x-a=0,根据△=1+4a=0,可得a=-
1
4

此时函数y=f(x)的图象与函数y=x+a的图象恰有一个公共点
根据函数的图象,要使函数y=f(x)的图象与函数y=x+a的图象恰有两个公共点
a>-
1
4

故选C.
点评:本题考查的重点是函数图象的交点问题,解题的关键是数形结合,充分利用函数的图象解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案