精英家教网 > 高中数学 > 题目详情
15.若x=1是函数f(x)=$\frac{a}{x}$+b(a≠0)的一个零点,则函数h(x)=ax2+bx的零点是(  )
A.0或-1B.0或-2C.0或1D.0或2

分析 由已知可得a+b=0,令h(x)=ax2+bx=x(ax+b)=0,可得答案.

解答 解:∵x=1是函数f(x)=$\frac{a}{x}$+b(a≠0)的一个零点,
∴a+b=0,
令h(x)=ax2+bx=x(ax+b)=0,
则x=0,或x=1,
故函数h(x)=ax2+bx的零点是0或1,
故选:C

点评 本题考查的知识点是函数的零点,函数的零点与方程根的关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知抛物线x2=2py(p>0)上一点M(4,y0)到焦点F的距离|MF|=$\frac{5}{4}$y0,则焦点F的坐标为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}sin(ωx+φ)(ω>0,-\frac{π}{2}≤φ<\frac{π}{2})$的图象关于直线x=$\frac{π}{3}$对称,且图象上相邻两个最高点的距离为π.
(1)求函数f(x)的解析式;
(2)若$f(\frac{α}{2})=\frac{{4\sqrt{3}}}{5}(\frac{π}{6}<α<\frac{2π}{3})$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{37}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{x}^{2},x≤0}\end{array}\right.$,则不等式f(x)<2的解集为$(-\sqrt{2},4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{∁}_{R}Q}\end{array}\right.$,则f(f(2π))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量多的颜色的球是白球.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设i为虚数单位,则复数$\frac{17}{4-i}$的共轭复数为(  )
A.4+iB.4-iC.-4+iD.-4-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=2sin(ωx-$\frac{π}{6}$)-1最小正周期是π,则函数f(x)的单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

同步练习册答案