精英家教网 > 高中数学 > 题目详情
10.球面面积等于它的大圆面积的(  )倍.
A.1B.2C.3D.4

分析 根据球的面积公式,大圆的面积公式,直接得到结果.

解答 解:球的面积4πR2,所以球的面积是大圆面积πR2的4倍.
故选D.

点评 本题是基础题,考查球的表面积公式与大圆的面积的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若椭圆$\frac{x^2}{16}+\frac{y^2}{8}=1$的弦被点(2,1)平分,则此弦所在的直线方程是(  )
A.x+y-3=0B.x+2y-4=0C.2x+13y-14=0D.x+2y-8=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a=2,b=3,$cosC=\frac{1}{3}$,则其外接圆的半径为(  )
A.$\frac{9\sqrt{2}}{2}$B.$\frac{9\sqrt{2}}{4}$C.$\frac{9\sqrt{2}}{8}$D.9$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F1,F2为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,P,Q分别为双曲线左、右支上的点,若$\overrightarrow{Q{F_2}}$=2$\overrightarrow{P{F_1}}$,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$═0,则双曲线的离心率为(  )
A.$\frac{{\sqrt{15}}}{3}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,半径为b的圆与直线y=x+$\sqrt{6}$相切.
(1)求椭圆C的标准方程;
(2)已知椭圆C的上顶点为B,过点B且互相垂直的动直线l1,l2与椭圆的另一个交点分别为P,Q,设直线PQ与y轴相交于点M,若$\overrightarrow{PM}$=λ$\overrightarrow{MQ}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中既是奇函数又在定义域上为增函数的是(  )
A.f(x)=3x+1B.f(x)=$\frac{1}{x}$C.f(x)=1-$\frac{1}{x}$D.f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)是偶函数,而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow m=({cosA,cosB})$,$\overrightarrow n=({b-2c,a})$,且$\overrightarrow m⊥\overrightarrow n$.
(1)求角A的大小;
(2)若a=3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2+3x<4},N={-2,-1,0,1,2},则M∩N=(  )
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-2,-1,0}D.{-1,0,1,2}

查看答案和解析>>

同步练习册答案