精英家教网 > 高中数学 > 题目详情
13.如图,四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求点M到平面PBC的距离.

分析 (1)设PB的中点为Q,连接AQ,NQ,由三角形中位线定理结合已知可得四边形AMNQ为平行四边形,得到MN∥AQ.再由线面平行的判定可得MN∥平面PAB;
(2)在Rt△PAB,Rt△PAC中,由已知求解直角三角形可得PE=$\sqrt{P{B}^{2}-B{E}^{2}}$=$\sqrt{21}$,进一步得到S△PBC.然后利用等积法求得点M到平面PBC的距离.

解答 (1)证明:设PB的中点为Q,连接AQ,NQ;
∵N为PC的中点,Q为PB的中点,∴QN∥BC且QN=$\frac{1}{2}$BC=2,
又∵AM=2MD,AD=3,∴AM=$\frac{2}{3}$AD=2 且AM∥BC,
∴QN∥AM且QN=AM,
∴四边形AMNQ为平行四边形,
∴MN∥AQ.
又∵AQ?平面PAB,MN?平面PAB,
∴MN∥平面PAB;
(2)解:在Rt△PAB,Rt△PAC中,PA=4,AB=AC=3,
∴PB=PC=5,又BC=4,取BC中点E,连接PE,则PE⊥BC,且PE=$\sqrt{P{B}^{2}-B{E}^{2}}$=$\sqrt{21}$,
∴S△PBC=$\frac{1}{2}$×BC×PE=$\frac{1}{2}$×4×$\sqrt{21}$=2$\sqrt{21}$.
设点M到平面PBC的距离为h,则VM-PBC=$\frac{1}{3}$×S△PBC×h=$\frac{2\sqrt{21}}{3}$h.
又VM-PBC=VP-MBC=VP-DBC$\frac{1}{3}$×S△ABC×PA=$\frac{1}{3}$×$\frac{1}{2}$×4×$\sqrt{5}$×4=$\frac{8\sqrt{5}}{3}$,
即$\frac{2\sqrt{21}}{3}$h=$\frac{8\sqrt{5}}{3}$,得h=$\frac{4\sqrt{105}}{21}$.
∴点M到平面PBC的距离为为$\frac{4\sqrt{105}}{21}$.

点评 本题考查直线与平面平行的判定,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.数列2,5,9,14,20,x,35,…中的x等于(  )
A.25B.26C.27D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=\frac{4}{3}{x^3}-\frac{3}{2}{x^2}-x+210$的单调递增区间是(  )
A.$({-∞,-\frac{1}{4}}]$B.$[{-\frac{1}{4},1}]$C.[1,+∞)D.$({-∞,-\frac{1}{4}}]及[{1,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知α,β均为锐角,sinα=$\frac{5}{13}$,cos(α+β)=$\frac{3}{5}$,求(1)sinβ,(2)tan(2α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知m,n是不同的直线,α,β是不重合的平面,给出下面四个命题:
①若α∥β,m?α,n?β,则m∥n
②若m,n?α,m∥β,n∥β,则α∥β
③若m,n是两条异面直线,若m∥α,m∥β,n∥α,n∥β,则α∥β
④如果m⊥α,n∥α,那么m⊥n
上面命题中,正确的序号为(  )
A.①②B.①③C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a=3$\sqrt{3}$,c=2,B=150°,求边b的长及S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线x2=$\frac{1}{4}$y的焦点到准线的距离是(  )
A.1B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,是一个正方体的表面展开图,则图中“2”所对的面是(  )
A.1B.7C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=-1对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=0.76f(0.76),b=log${\;}_{\frac{10}{7}}$6f(log${\;}_{\frac{10}{7}}$6),c=60.6f(60.6),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

同步练习册答案